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The task of computer vision is to make computers understand the physical

word through images. Lighting is the medium through which we capture images of

the physical world. Without lighting, there is no image, and different lighting leads

to different images of the same physical world. In this dissertation, we study how

to understand lighting from images.

With the emergence of large datasets and deep learning in recent years, learn-

ing based methods play a more and more important role in computer vision, and

deep Convolutional Neural Networks (CNNs) now dominate most of the problems

in computer vision. Despite their success, deep CNNs are notorious for their data

hungry nature compared with traditional learning based methods. While collecting

images from the internet is easy and fast, labeling those images is both time con-

suming and expensive, and sometimes, even impossible. In this work, we focus on

understanding lighting from faces and natural scenes, in which ground truth labels

of the lighting are impossible to achieve.



As a preliminary topic, we first study the capacity of deep CNNs. Designing

deep CNNs with less capacity and good generalization is one way to reduce the

amount of labeled data needed in training deep CNNs, and understanding the ca-

pacity of deep CNNs is the first step towards that goal. In this work, we empirically

study the capacity of deep CNNs by studying the redundancy of parameters in them.

More specifically, we aim at optimizing the number of neurons in a network, thus

the number of parameters. To achieve that goal, we incorporate sparse constraints

into the objective function and apply a forward-backward splitting method to solve

this sparse constrained optimization problem efficiently. The proposed method can

significantly reduce the number of parameters, showing that networks with small

capacity can work well.

We then study an important problem in computer vision: inverse lighting

from a single face image. Lacking massive ground truth lighting labels, we generate

a large amount of synthetic data with ground truth lighting to train a deep network.

However, due to the large domain gap between real and synthetic data, the network

trained using synthetic data cannot generalize well to real data. We thus propose

to use real data to train the deep CNN together with synthetic data. We apply an

existing method to estimate lighting conditions of real face images. However, these

lighting labels are noisy. We then propose a Label Denoising Adversarial Network

(LDAN) to make use of these synthetic data to help train a deep CNN to regress

lighting from real face images, denoising labels of real images. We have shown that

the proposed method can generate more consistent lighting for faces taken under

the same lighting condition.



Third, we study how to relight a face image using deep CNNs. We formulate

this problem as a supervised image to image translation problem. Due to the lack

of a “in the wild” face dataset that is suitable for this task, we apply a physically-

based face relighting method to generate a large scale, high resolution, “in the wild”

portrait relighting dataset (DPR). A deep Convolutional Neural Network (CNN) is

then trained using this dataset to generate a relighted portrait image by taking a

source image and a target lighting as input. We show that our training procedure can

regularize the generated results, removing the artifacts caused by physically-based

relighting methods.

Fourth, we study how to understand lighting from a natural scene based on

an RGB image. We propose a Global-Local Spherical Harmonics (GLoSH) lighting

model to improve the lighting representation, and jointly predict reflectance and

surface normals. The global SH models the holistic lighting while local SHs account

for the spatial variation of lighting. A novel non-negative lighting constraint is

proposed to encourage the estimated SHs to be physically meaningful. To seamlessly

make use of the GLoSH model, we design a coarse-to-fine network structure. Lacking

labels for reflectance and lighting, we apply synthetic data for model pre-training

and fine-tune the model with real data in a self-supervised way. We have shown

that the proposed method outperforms state-of-the-art methods in understanding

lighting, reflectance and shading of a natural scene.
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Chapter 1: Introduction

In nature, light creates the color. In the picture, color creates the light.

– Hans Hofmann

The task of computer vision is to make computers understand the physical

world through images. Lighting, as the medium through which we capture images

of the physical world, is a key factor to understand the physical world through

images. For instance, the same world under different lighting conditions can form

quite different images. As a result, the three general topics in computer vision:

recognition, registration and reconstruction (known as the 3Rs) are all significantly

affected by lighting.

In this dissertation, we study how to understand lighting from images. More

specifically, we study how to estimate lighting conditions from faces and natural

scenes through an RGB image. With the emergence of large datasets and deep

learning in recent years, learning based methods play a more and more important

role in computer vision, and Deep Convolutional Neural Networks (CNNs) [3] now

dominate almost all problems of the 3Rs. Deep CNNs first achieved the best perfor-

mance in many recognition problems [4–7]. Then, researchers began to apply deep

CNNs to registration [8, 9] and reconstruction [10–12] and achieved state-of-the-art

1



performance.

Inspired by the success of Deep CNNs in the 3Rs, we propose to apply it to

understand lighting from images. However, despite their success in the 3Rs of com-

puter vision, deep CNNs are notorious for their data hungry nature compared with

traditional learning based methods. Taking image classification as an example; to

train a deep CNN that performs reasonably well, researchers need to feed hundreds

of thousands of labeled images into the deep network. While collecting images from

the internet is easy and fast, collecting labels for those images is both time consum-

ing and expensive, and sometimes, even impossible (e.g. ground truth lighting of

faces and natural scenes) [13].

There are several ways to save the human labor of labeling images: designing

user friendly interfaces for labeling data; applying active learning to label the most

informative data; using domain adaption to make use of a large dataset with labels

to help the target task which has a small amount of data; unsupervised learning

in which labels are not needed, to name a few. Inspired by the recent progress of

rendering techniques in graphics, we propose to use synthetic data to alleviate the

large demands of real labels in lighting estimation. In this dissertation, we first

empirically study the capacity of current deep CNNs to get an idea of how to design

deep CNNs with less capacity. We then apply deep CNNs to estimate lighting from

faces with the help of synthetic face images. A portrait relighting algorithm is then

proposed, in which physically based rendering is used to generate a large amount

of high quality, “in the wild” face images as training data. Finally, we propose to

estimate lighting together with reflectance and normal from a natural scene using an
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RGB image, where synthetic images with ground truth labels are used to pre-train

our network.

1.1 Empirical study of the capacity of deep CNNs.

One way to reduce the heavy demands of data for training deep CNNs is

to design deep CNNs with less capacity but good generalization. Analyzing the

capacity of a deep CNN is the first step towards that goal. However, theoretically

analyzing the capacity of a network is difficult due to its complex structure. In

Chapter 2, we empirically study the capacity of deep CNNs by studying how many

parameters of deep CNNs can be removed without affecting their performance.

To attain favorable performance on large-scale datasets, a common practice is

to design CNNs with a lot of parameters. However, recent studies have shown that

the capacities of CNNs are much larger than necessary [14–17]. Inspired by these

works, we proposed to reduce the number of parameters. More specifically, we aim

at optimizing the number of neurons in a network, thus the number of parameters.

To achieve that goal, we incorporate sparse constraints into the objective

function. The forward-backward splitting method [18, 19] is applied to solve this

sparse constrained optimization problem efficiently. The main advantage of forward-

backward splitting is that it bypasses the sparse constraint evaluations during the

standard back-propagation step, making the implementation very practical. We also

investigate the importance of rectified linear units (ReLU) [20] in sparse constrained

CNNs, showing that using ReLU can lead to more pruned neurons. We study two
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sparse constraints: tensor low rank [21] and group sparsity [22] and carry out exper-

iments on four well-known models (LeNet [3], CIFAR-10 quick [23], AlexNet [4] and

VGG [5]) using three public datasets including ImageNet. Our experiments demon-

strate that the proposed method can reduce a huge number of parameters during

the training stage, showing that a network with small capacity can work well.

1.2 Training deep CNNs with synthetic data.

Though getting ground truth labels for real data is difficult, generating syn-

thetic data with ground truth labels is usually easy and cheap. As a result, synthetic

data is becoming more and more popular to help train deep CNNs. [12, 24–30] are

some examples of applying synthetic data to train deep CNNs. [27] and [30] use syn-

thetic data as an intermediary to bridge between real data and their labels. [12,24,26]

directly train their deep CNNs on synthetic data and apply them to real data without

considering the domain gap between synthetic and real data. [29] argued that domain

adaptation is necessary to better make use of synthetic data and proposed a simple

strategy that consists of training synthetic and real data simultaneously. [25,28], on

the other hand, applied adversarial loss to bridge the domain gap between synthetic

and real data.
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1.2.1 Label Denoising Adversarial Networks (LDAN) for Inverse Light-

ing of Faces

In Chapter 3, we propose to train a deep CNN for inverse lighting from a single

face image. Since getting ground truth lighting labels for face images in the wild is

difficult, inspired by the above mentioned methods, we propose to apply synthetic

data to help train a deep CNN. We notice that a deep CNN trained only on synthetic

data can not generalize well to real world face images due to the big domain gap

between synthetic and real data. To reduce this gap, we also apply real data while

training the network. We use an existing method [31] to estimate lighting parameters

for real face images, which are treated as ground truth with noise. Synthetic data

with noise free ground truth labels are then used to help alleviate the effect of such

noise. More specifically, we utilize the idea of Generative Adversarial Networks

(GAN) [32] and propose a Label Denoising Adversarial Network (LDAN).

We design the lighting regression deep CNN to have two sub-networks: a

feature net that extracts lighting related features and a lighting net that takes these

features as input and predicts the lighting. Since synthetic data contains no noise,

the lighting net trained with synthetic data is accurate; we thus directly apply it to

real data. As a result, we only need to train a feature network for real data. As

the lighting net expects lighting related features for synthetic data as input, while

training the feature net for real data, we utilize the idea of Generative Adversarial

Networks (GAN) [32] to map the distribution of lighting related features for real

data to that of synthetic data. The training of LDAN thus has two steps: 1) Train
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with synthetic data; (2) Fix the feature net for synthetic data and the lighting net,

train another feature net for real data with adversarial loss and regression loss.

Figure 1.1 illustrates the training procedure of LDAN.

Figure 1.1: Training of a LDAN model has two steps: 1) Train the feature net and
lighting net for synthetic data with two losses: Faces with similar lighting should
have similar lighting related features (||s1−s2||2); Estimated lighting should be close
to ground truth lighting (||l1− l∗||2 and ||l2− l∗||2). 2) Train the feature net for real
data while fixing both the feature net and lighting net trained in step 1. We use two
losses in this step: The distribution of synthetic features and real features should be
close (||Ps−Pr||); Estimated lighting should be close to noisy ground truth lighting
(||lr − l̂r||).

We test our proposed method on the MultiPie data set. While the lighting for

each image is not known, there are groups of images that all have the same lighting.

Our experiments show that our network outperforms existing methods in producing

consistent lighting parameters of different faces under similar lighting conditions.
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1.2.2 Deep Single-Image Portrait Relighting

In Chapter 4, we propose to train a deep CNN for single-image portrait re-

lighting. Conventional physically-based methods need to solve an inverse rendering

problem, estimating face geometry, albedo and lighting. However, the inaccurate

estimation of face components can cause strong artifacts in relighting, leading to

unsatisfactory results. In the proposed work, we apply a physically-based portrait

relighting method to generate a large scale, high resolution, “in the wild” portrait

relighting dataset (DPR). A deep Convolutional Neural Network (CNN) is then

trained using the proposed data for portrait relighting. We show that the train-

ing procedure regularizes the generated results, removing the artifacts caused by

physically-based relighting methods.

We design our network to have an hourglass structure [33] which takes a source

image and a target lighting as input and generates a new portrait image under the

target lighting condition. We notice that skip connections in an hourglass network

prevent the bottleneck layers from learning good facial information, causing low

quality of the generated face images. A skip training strategy is thus proposed

to enforce more facial information in the bottleneck layer which can also improve

the quality of the generated image. A GAN loss is further applied to alleviate the

artifacts in the relighted portrait images. Our trained network can relight portrait

images with resolutions as high as 1024× 1024. We evaluate the proposed method

on the proposed DPR datset, flickr portrait dataset and MultiPie dataset both

qualitatively and quantitatively. Our experimental results demonstrate that the
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proposed method achieves state-of-the-art results.

1.2.3 GLoSH: Global-Local Spherical Harmonics for Intrinsic Image

Decomposition

In Chapter 5, we study how to estimate lighting from a natural scene with

an RGB image. Traditional intrinsic image decomposition focuses on decomposing

images into reflectance and shading, leaving surface normals and lighting entangled

in shading. One challenge of estimating lighting from a natural scene is the lack of

a suitable lighting model. Unlike the lighting of a single object such as faces which

can be modeled using a single set of Spherical Harmonics [34, 35], the lighting of

a natural scene is much more complicated due to its spatial variation caused by

shadow, inter-reflection and the presence of light sources in the scene. In this work,

we propose a Global-Local Spherical Harmonics (GLoSH) lighting model to better

model the lighting of a natural scene. The global SH models the holistic lighting

while local SHs account for the spatial variation of lighting. A novel non-negative

lighting constraint is proposed to encourage the estimated SHs to be physically

meaningful. To seamlessly reflect the GLoSH model, we design a coarse-to-fine

network structure. The coarse network predicts global SH, reflectance and normals,

and the fine network predicts their local residuals.

Similar to our previous work, ground truth labels of reflectance and lighting

are not available for real data, we thus apply synthetic data for model pre-training

and then fine-tune the model with real data in a self-supervised way. Compared to
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the state-of-the-art methods only targeting normals or reflectance and shading, our

method recovers all components and achieves consistently better results on three

real dataset, IIW, SAW and NYUv2.

1.3 Summary

As the medium through which we capture images of the physical world, lighting

is one of the key components to understand the physical world through images.

Understand lighting from images is thus an important topics in computer vision

which can help computers better understand the world. The biggest challenge of

this task is the lack of ground truth lighting for real images. In this dissertation,

we show the power of synthetic data in training CNNs to understand lighting from

images by summarizing three research works: lighting estimation from faces, portrait

relighting and intrinsic image decomposition from natural scenes. In the following

chapters, we discuss these research works in detail.
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Chapter 2: Less is More: Towards Compact CNNs

In this chapter, we study the capacity of current deep CNNs. Understanding

the capacity of deep CNNs is important for reducing the amount of labeled data used

to train a network, since it is the first step towards designing a network with less

capacity and good generalization. As theoretically analyzing the capacity of a deep

CNN is difficult, we do it in an empirical way by studying how many parameters of

a deep CNN could be removed without affecting its performance. This work [36] is

in collaboration with Jose M. Alvarez and Fatih Porikli.

2.1 Introduction

The last few years have witnessed the success of deep convolutional neural

networks (CNN) in many computer vision applications. One important reason is

the emergence of large annotated datasets and the development of high-performance

computing hardware facilitating the training of high capacity CNNs with an excep-

tionally large number of parameters.

When defining the structure of a network, large networks are often preferred,

and strong regularizers [17] tend to be applied to give the network as much discrim-

inative power as possible. As such, the state-of-the-art CNNs nowadays contain
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hundreds of millions of parameters [5]. Most of these parameters come from one

or two layers that host a large number of neurons. Take AlexNet [4] as an exam-

ple. The first and the second fully connected layers, which have 4096 neurons each,

contain around 89% of all the parameters. Having to use such a large number of

parameters leads to high memory requirements. Consequently, using deep CNNs

obligates significant hardware resources, which hinders their practicality for mobile

computing devices that have limited memory.

Several recent studies have focused on reducing the size of the network con-

cluding that there is substantial redundancy in the number of parameters of a CNN.

For instance, [37, 38] represent the filters in a CNN using a linear combination of

basis filters. However, these methods can only apply to an already trained net-

work. Other works have investigated directly reducing the number of parameters in

a CNN by using sparse filters instead of its original full-size filters. To the best of

our knowledge, existing deep learning toolboxes [39–41] do not support sparse data

structures yet. Therefore, special structures need to be implemented. Moreover,

FFT is shown to be very efficient to compute convolutions on GPUs [42]. However,

a sparse matrix is usually no longer sparse in the Fourier domain, which limits the

applicability (i.e., reduction of memory footprint) of these methods.

To address the shortcomings of the aforementioned works, we propose an effi-

cient method to decimate the number of neurons. Our approach has four key advan-

tages: (1) Neurons are assessed and reduced during the training phase. Therefore,

no pre-trained network is required. (2) The reduction of parameters does not rely on

the sparsity of neurons; thus, our method can be directly included in popular deep
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Network
compression (%)

memory reduceda Top-1 error (%)
neuronsb parametersc

LeNet 97.80 92.00 1.52 (MB) 0.63 (0.72)
CIFAR-10 quick 73.44 33.42 0.19 (MB) 25.25 (24.75)
AlexNet 73.73 65.42 152.14 (MB) 46.10 (45.57)
VGG-13 76.21 61.29 311.06 (MB) 39.26 (37.50)

aSupposing a single type is used to store the weight
bResults on number of neurons in the first fully connected layer
cResults on the number of parameters of the whole network

Table 2.1: Neuron reduction in the first fully connected layer, the total parame-
ter compression, reduced memory, the top-1 validation error rate (red: error rate
without sparse constraints).

learning toolboxes. (3) The number of filters in the Fourier domain is proportional

to the number of neurons in the spatial domain. Therefore, our method can also

reduce the number of parameters in the Fourier domain. (4) Reducing the number

of neurons of a layer directly condenses the data dimensionality when the output of

an internal layer is utilized as image features [7, 43].

Our method consists of imposing sparse constraints on the neurons of a CNN

in the objective function during the training process. Furthermore, to minimize the

extra computational cost of adding these constraints, we solve the sparse constrained

optimization problem using the forward-backward splitting method [18, 19]. The

main advantage of forward-backward splitting is to bypass the sparse constraint

evaluations during the standard back-propagation step, making the implementation

very practical. We also investigate the importance of rectified linear units in sparse

constrained CNNs. Our experiments show that rectified linear units help to reduce

the number of neurons leading to even more compact networks.

We conduct a comprehensive set of experiments to validate our method using
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four well-known models (i.e., LeNet, CIFAR-10 quick, AlexNet and VGG) on three

public datasets including ImageNet. Table 2.1 summarizes a representative set of

our results when constraints are applied to the first fully connected layer of each

model, which has the largest number of neurons and parameters. As shown, even

with a large portion of neurons removed and, therefore, a significant reduction in

the memory footprint of the original model, the resulting networks still perform as

well as the original ones. These results are also convenient for deployment in mobile

platforms where computational resources are relevant. For instance, using single

float type (4 bytes) to store the network, the amount of memory saved for AlexNet

in Table 2.1 is 152 MB.

To reiterate, the contribution of the proposed method in this chapter is three-

fold. First, we remove neurons of a CNN during the training stage. Second, we

analyze the importance of rectified linear units for sparse constraints. Finally, our

experimental results on four well-known CNN architectures demonstrate a signifi-

cant reduction in the number of neurons and the memory footprint of the testing

phase without affecting the classification accuracy.

2.2 Related Work

Deep CNNs demand large memory and excessive computational times. This

motivated studies to simplify the structure of CNNs. However, so far only one

pioneering work has explored the redundancy in the number of neurons [17].

We organize the related work in three categories; network distillation, ap-
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proximating parameters or neurons by memory efficient structures, and parameter

pruning in large networks.

Network distillation: The work in [44] is among the first papers that tried

to mimic a complicated model with a simple one. The key idea is to train a powerful

ensemble model and use it to label a large amount of unlabeled data. Then a neural

network is trained on these data so as to perform similarly to the ensemble model.

Following the idea of [44], [45–47] present training of a simple neural network based

on the soft output of a complicated one. Their results show that a much simpler

network can imitate a complicated network. However, these methods require a two-

step training process and the simple network must be trained after the complicated

one.

Memory efficient structures: Most of the studies in this category are in-

spired by the work of Denil et al. [14] that demonstrated redundancy in the parame-

ters of neural networks. It proposed to learn only 5% of the parameters and predicted

the rest by choosing an appropriate dictionary. Inspired by this, [37,38,48] proposed

to represent the filters in convolutional layers by a linear combination of basis filters.

As a result, convolving with the original filters is equivalent to convolving with the

base filters followed by a linear combination of the output of these convolutions.

These methods focus on speeding up the testing phase of CNNs. In [49], the use

of the canonical polyadic decomposition (CP-decomposition) to approximate the

filter in each layer as a sequence of four convolutional layers with small kernels is

investigated in order to speed up testing time when the network is run on a CPU.

In [50] several schemes to quantize the parameters in CNNs are presented. All these
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methods require a trained network and then fine tuning for the new structures. [51]

applied the Tensor Train (TT) format to approximate the fully connected layers and

train the TT format CNN from scratch. They can achieve a high compression rate

with little loss of accuracy. However, it is not clear whether the TT format can be

applied to convolutional layers.

Parameter pruning: A straightforward way to reduce the size of CNNs is

directly removing some of the unimportant parameters. Back to 1990, LeCun et

al. [52] introduced computing the second derivatives of the objective function with

respect to the parameters as the saliency, and removing the parameters with low

saliency value. Later, Hassibi and Stork [53] followed their work and proposed an

optimal brain surgeon, which achieved better results. These two methods, neverthe-

less, require computation of the second derivatives, which is computationally costly

for large-scale neural networks [54]. In [15], directly adding sparse constraints on

the parameters was discussed. This method, different from ours, cannot reduce the

number of neurons.

Another approach [16] combines the memory efficient structures and parameter

pruning. First, unimportant parameters are removed, and then, after a fine-tuning

process, the remaining parameters are quantized for further compression. This work

is complementary to ours and can be used to further compress the network trained

using our method.

Directly related to our proposed method is [17]. Given a pretrained CNN,

it proposes a theoretically sound approach to combine similar neurons together.

Yet, their method is mainly for pruning a trained network whereas our method
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directly removes neurons during training. Although [17] is data-free when pruning,

it requires a pretrained network, which is data dependent. Moreover, our results

show that, without degrading the performance, we can remove more neurons than

the suggested cut-off value reported in [17].

2.3 Sparse Constrained Convolutional Neural Networks

Notation: In the following discussion in this chapter, if not otherwise speci-

fied, | · | is the `1 norm, ||x|| =
√∑

i x
2
i is the `2 norm for a vector (Frobenius norm

for a matrix). We use W and b to denote all the parameters in filters and bias

terms in a CNN, respectively. wl and bl represent the filter and bias parameters

in the l-th layer. wl is a tensor whose size is w × h × m × n, where w and h are

the width and the height of a 2D filter, m represents the number of channels for

the input feature and n is the number of channels for the output feature. bl is a

n dimensional vector, i.e. each output feature of this layer has one bias term. wlj

represents a w× h×m filter that creates the j-th channel of the output feature for

layer l, blj is its corresponding bias term. wlj and blj together form a neuron. We use

Ŵ, ŵl and ŵlj to represent the augmented filters (they contain the corresponding

bias term).

2.3.1 Training a Sparse Constrained CNN

Let {X,Y∗} be the training samples and corresponding ground-truth label.

Then, a CNN can be represented as a function Y = f(Ŵ,X), where Y is the output
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of the network. Ŵ is learned through minimizing an objective function:

min
Ŵ

ψ(f(Ŵ,X),Y∗). (2.1)

We use ψ(Ŵ) to represent the objective function for simplicity. The objective func-

tion ψ(Ŵ) is usually defined as the average cross entropy of the ground truth labels

with respect to the output of the network for each training image. Equation (2.1) is

usually solved using a gradient descend based method such as back-propagation [3].

We add sparse constraints on the neurons of a CNN. Therefore, the optimiza-

tion problem of (2.1) can be written as:

min
Ŵ

ψ(Ŵ) + g(Ŵ), (2.2)

where g(Ŵ) represents the set of constraints added to Ŵ. Given this new opti-

mization problem, the k-th iteration of a standard back-propagation can be defined

as:

Ŵk = Ŵk−1 − τ ∂ψ(Ŵ)

∂Ŵ
|Ŵ=Ŵk−1 − τ

∂g(Ŵ)

∂Ŵ
|Ŵ=Ŵk−1 , (2.3)

where Ŵk represents the parameters learned at k-th iteration and τ is the learning

rate. Based on (2.3), a new term ∂g(Ŵ)

∂Ŵ
|Ŵ=Ŵk−1 must be added to the gradient

of each constrained layer during back-propagation. In those cases where g(Ŵ)

is non-differentiable at some points, sub-gradient methods of g(Ŵ) are usually

needed. However, these methods have three main problems. First, iterates of the

17



sub-gradient at the points of non-differentiability hardly ever occur [18]. Second,

sub-gradient methods usually cannot generate an accurate sparse solution [55]. Fi-

nally, sub-gradients of some sparse constraints are difficult to choose due to their

complex form or they may not be unique [19]. To avoid these problems, and in

particular with l1 constrained optimization problems, [56] and [15] proposed to use

a proximal mapping. Following their idea, we apply a proximal operator to our

problem.

2.3.2 Forward-Backward Splitting

Our proposal to solve the problem (2.2) and therefore, train a constrained

CNN, consists of using a forward-backward splitting algorithm [18, 19]. Forward-

backward splitting provides a way to solve non-differentiable and constrained large-

scale optimization problems of the generic form:

min
z
f(z) + h(z), (2.4)

where z ∈ RN , f(z) is differentiable and h(z) is an arbitrary convex function [18,

19]. The algorithm consists of two stages: First, a forward gradient descent on

f(z). Then, a backward gradient step evaluating the proximal operator of h(z), i.e.

proxf (z) = arg minu (h(u) + λ(u− z)2), where λ is a weight to be chosen. Using

this algorithm has two main advantages. First, it is usually easy to estimate the

proximal operator of h(z) or even have a closed form solution. Second, backward

analysis has an important effect on the convergence of the method when f(z) is
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convex [19].

Though there is no guarantee about convergence when f(z) is non-convex,

forward-backward splitting method usually works quite well for non-convex opti-

mization problems [19]. By treating ψ(Ŵ) in Equation (2.2) as f(z), the forward

gradient descent can be computed exactly as the standard back-propagation algo-

rithm in training CNNs. As a result, using the forward-backward splitting method

to solve sparse constrained CNNs has two steps in one iteration. Algorithm 1 shows

how to apply this method to optimize Equation (2.2), where τ k is the learning rate

of the forward step at k-th iteration.

Algorithm 1: Forward-backward splitting for sparse constrained CNNs

1: while Not reaching maximum number of iterations do
2: One step back-propagation for ψ(Ŵ) to get Ŵk∗

3: Ŵk = arg minŴ g(Ŵ) + 1
2τk
||Ŵ − Ŵk∗||2

4: end while

In practice, we define one step in line 2 of Algorithm 1 as one epoch instead

of one iteration of the stochastic gradient descent algorithm. There are two main

reasons for this. First, to minimize the computational training overhead of the

algorithm as we need to estimate fewer proximal operators of g(Ŵ). Second, the

gradient of ψ(Ŵ) at each iteration is an approximation to the exact gradient which

is noisy [56]. Computing the gradient after a certain number of iterations makes the

learned parameters more stable [55].
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2.3.3 Sparse Constraints

Our goal is removing neurons ŵlj, each of which is a tensor. To this end,

we consider two sparse constraints for g(Ŵ) in Equation (2.2): tensor low rank

constraints [21] and group sparsity [22].

Tensor Low Rank Constraints

Although the low-rank constraints for 2D matrices and their approximations

have been extensively studied, as far as we know, there are few works considering the

low-rank constraints for higher dimensional tensors. In [21], the authors proposed

to minimize the average rank of different unfoldings of a tensor matrix. To relax the

problem to convex, they proposed to approximate the average rank using the average

of trace norms, which is called the tensor trace norm, for different unfoldings [21].

We use this formulation as our tensor low rank constraints.

The tensor trace norm of a neuron ŵlj is ||ŵlj||tr = 1
n

∑n
i=1 ||ŵlj(i)||tr, where n

is the order of tensor ŵlj, and ŵlj(i) is the result of unfolding the tensor ŵlj along

the i-th mode. Under this definition, function g(Ŵ) can be defined as:

g(Ŵ) = λ
∑

(j,l)∈Ω

1

n

n∑
i=1

||ŵlj(i)||tr, (2.5)

where Ω is a set containing all the neurons to be constrained and λ is the weight for

the sparse constraint.
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As a result, the backward step in the forward-backward splitting is given by:

ŵk
lj = arg min

ŵlj

1

n

n∑
i=1

||ŵlj(i)||tr +
1

2τλ
||ŵlj − ŵk∗

lj ||2

= arg min
ŵlj

1

n

n∑
i=1

||ŵlj(i)||tr +
1

2τλn

n∑
i=1

||ŵlj(i) − ŵk∗
lj(i)||2. (2.6)

This problem can be solved using the Low Rank Tensor Completion (LRTC) al-

gorithm proposed in [21]. Suppose we have a 2D matrix X, let X = UΣV be

the singular value decomposition of X, where Σ is a diagonal matrix of the sin-

gular values of X. Now let us suppose the i-th singular value is σi, then define

Στ = diag(max(σi − τ), 0). Then the shrinkage operator is defined as:

Dt(X) = UΣtV
T , (2.7)

Algorithm 2 shows how to use LRTC to optimize Equation (2.6).

Algorithm 2: Backward step for tensor low rank constraints

1: Initialize ŵk
lj = ŵk∗

lj

2: while not converged do
3: for i = 1 to n do
4: Mi = Dτλ(

1
2
(ŵk

lj(i) + ŵk∗
lj(i)))

5: end for
6: ŵk

lj = 1
n

∑n
i=1Mi

7: end while

Group Sparse Constraints

Group sparse constraints are defined as l2,1 regularizer. Applying l2,1 to our
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objective function, we have:

g(Ŵ) = λ
∑

(j,l)∈Ω

||ŵlj||, (2.8)

where λ and Ω are the same as in Equation (2.5). ||.|| is defined in Section 2.3.

According to [22], the backward step in the forward-backward splitting method at

the k-th iteration now becomes:

ŵk
lj = max{||ŵk∗

lj || − τλ, 0}
ŵk∗
lj

||ŵk∗
lj ||

, (2.9)

where τ is the learning rate and ŵk∗
lj is the optimized neuron from the forward step

in forward-backward splitting.

2.3.4 Importance of Rectified Linear Units in Sparse Constrained

CNNs

Convolutional layers in a CNN are usually followed by a nonlinear activation

function. Rectified Linear Units (ReLU) [4] have been heavily used in CNNs for

computer vision tasks. Besides the advantages of ReLU discussed in [20,57,58], we

show that ŵlj = 0 is a local minimum in sparse constrained CNNs, of which the

non-linear function is ReLU. This can explain our findings that ReLU can help in

removing more neurons and inspires us to set momentum to 0 for neurons which

reach their sparse local minimum during training as discussed in Section 2.4.1.

The ReLU function is defined asReLU(x) = max(0, x), which is non-differentiable
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at 0. This creates difficulty in analyzing the local minimum of sparse constrained

CNNs. Based on the observation that, in practical implementations, the gradient

of the ReLU function at 0 is set to 0 [39–41]. We consider the following practical

definition of ReLU:

ReLU(x) =


x if x > ε

0 if x ≤ ε.

(2.10)

Where ε is chosen such that for any real number x that a computer can represent,

if x > 0, then x > ε; if x ≤ 0, then x < ε. The non-differentiable point of the ReLU

function is now at ε which will never appear in practice. Under this definition, the

ReLU function is differentiable and continuous at point 0, the gradient of ReLU(x)

at 0 is now 0. As a result, this practical definition of ReLU is consistent with the

implementations of a ReLU function in practice [39–41].

We now show that a particular neuron ŵlj = 0 lies in a flat region of ψ(ŵlj)

under the above definition of ReLU. Take a particular neuron ŵlj as an example

and suppose all other neurons are fixed. Also, suppose x is one of the inputs that

will go through ŵlj in the l-th layer. The output for x, assuming the convolution

layer is followed by a ReLU function, is zx̂ = ReLU(ŵljx̂), where x̂ is x augmented

by 1 to account for the bias term. Next, we show that ŵlj = 0 is the local minimum

of Equation (2.2) along the dimensions of ŵlj, referred to as a local minimum of a

CNN for simplicity.

Given any x ∈ Ω, define ϕ(∆ŵlj) = ∆ŵljx̂ as a function of ∆ŵlj. It is easy to
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see that ϕ(∆ŵlj) is a continuous function. As a result, we can always find a δx such

that |ϕ(∆ŵlj) − ϕ(0)| < ε, ∀||∆ŵlj − 0|| < δx. According to Equation (2.10), for

those ŵlj, ReLU(∆ŵljx̂) = 0. Denoting δ as the smallest one among all δx, we know

that for any ||∆ŵlj − 0|| < δ, ReLU(∆ŵljx) = 0, ∀x ∈ Ω. As all other neurons are

fixed, we know that for any ||∆ŵlj − 0|| < δ, ψ(∆ŵlj) = c, where ψ is the first part

in Equation (2.2) and c is a scalar. Since g(Ŵ) contains a sparse constraint on ŵlj,

g(ŵlj = 0) ≤ g(∆ŵlj) and the equality holds if and only if ∆ŵlj = 0. As a result,

for any ||∆ŵlj−0|| < δ, ψ(ŵli = 0) + g(ŵli = 0) ≤ φ(∆ŵli) + g(∆ŵli), i.e. ŵlj = 0

is the local minimum of the objective function ψ(ŵlj) + g(ŵlj).

The fact that ŵlj = 0 is a local minimum for sparse constrained CNNs using

ReLU as a nonlinear activation function can explain the improvement in the number

of neurons removed as discussed in Section 2.4.1. Importantly, we find that using

momentum during the optimization may push a zero neuron away from being 0 since

momentum memorizes the gradient of this neuron in previous steps. As a conse-

quence, using momentum would lead to more non-zero neurons without performance

improvement. In practice, once a neuron reaches 0, we set its momentum to zero,

forcing the neuron to maintain its value. As we will demonstrate in Section 2.4.1,

this results in more zero neurons without affecting the performance.

2.4 Experiments

We test our method on four well-known convolutional neural networks on three

well-known datasets: LeNet on MNIST [3], CIFAR10-quick [23] on CIFAR-10 [59]
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and AlexNet [4] and VGG [5] on ILSVRC-2012 [60]. We use LeNet and CIFAR10-

quick provided by Matconvnet [41] and AlexNet and VGG provided by [61] to carry

out all our experiments.

All the structures of the networks are provided by Matconvnet [41] or [61], the

only change we made is to add a ReLU function after each convolutional layer in

LeNet, which we will discuss in detail later. For all our experiments, data augmen-

tation and pre-processing strategies are provided by [41] and [61].

2.4.1 LeNet on MNIST

MNIST is a well-known dataset for machine learning and computer vision. It

contains 60, 000 handwritten digits for training and 10, 000 for testing. All these

digits are images of 28× 28 with a single channel. The mean of each set of data will

be subtracted, as suggested in [41].

The average top 1 validation error rate of LeNet on MNIST adding a ReLU

layer is 0.73%. As training a LeNet on MNIST is fast, we use this experiment as a

sanity check. Results are computed as the average over four runs of each experiment

using different random seeds.

ReLU helps removing more neurons:

The LeNet structure provided by Matconvnet has two convolutional layers

and two fully connected layers. The two convolutional layers are each followed by

a max pooling layer. Under this structure, the sparse solution may not be a local

minimum. Based on the discussion in Section 2.3.4, we add a ReLU layer after each
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Figure 2.1: (a) Percentage of nonzero neurons on the second convolutional layer
for LeNet under different weights for sparse constraints with and without adding a
ReLU layer. (b) Corresponding top 1 validation error rate. Baseline in (b) shows
the top 1 validation error rate without adding any sparse constraints. Error bars
represent the standard deviation over the four experiments.

of these two convolutional layers so that ŵlj = 0 is a local minimum. We compare

these two structures by using different weights for sparse constraints added to the

second convolutional layer.

As shown in Figure 2.1, adding ReLU improves the performance of LeNet

regardless of whether we add sparse constraints or not. Comparing these two struc-

tures, adding a ReLU layer always leads to more zero neurons compared with the

original structure. What is more interesting is that, with a ReLU layer, the top 1

validation error rate of LeNet with sparse constraints is more close to, if not better

than, the performance without sparse constraints. This may be explained by the

fact the ŵlj = 0 is a local minimum of the structure with ReLU and this local min-

imum is usually a good one. In the following discussion, when LeNet is mentioned,

we mean LeNet with a ReLU function after each of its convolutional layers.
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Figure 2.2: Comparison of the proposed results with setting momentum to be zero.
(a) and (c) show the percentage of non-zero neurons for second convolutional layer
and first fully connected layer under different weights for sparse constraints respec-
tively. (b) and (d) show their corresponding top 1 validation error rate.
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Momentum for sparse local minimum:

Momentum plays a significant role in training CNNs. It can be treated as a

memory of the gradient computed in previous iterations and has been proved to

accelerate the convergence of SGD. However, this memory of gradient effect may

push a neuron away from its sparse local minimum, leading to results with more

non-zero neurons with no improvement in performance. To avoid this problem we

can directly set the momentum of the neurons to be zero for those sparse local

minima that are reached.

In Figure 2.2, we compare the number of non-zero neurons with and without

setting the momentum to be zero for LeNet on the MNIST dataset. We add the

sparse constraints on the second convolutional layer and the first fully connected

layer since they have most of the filters. As shown in Figure 2.2, the performance

does not drop when momentum is set to be zero for local sparse minima. Addi-

tionally, we sporadically achieve better performance. Moreover, for the first fully

connected layer, setting momentum to be zero leads to results with more zero neu-

rons under large sparse weights.1

From Figure 2.1 and Figure 2.2, we find that the top-1 error rates of using

tensor low-rank constraints are a little better than using group sparse constraints.

Group sparse constraints, however, can produce more zero neurons, which can re-

sult in more compact networks. These differences are very small, so we conclude

that both of these methods can help removing neurons without hurting the perfor-

1For a clear comparison, we only show results under large weights for the first fully connected
layer in the figure.
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Figure 2.3: a) MNIST Comparison between single layer results of the proposed
method and the data-free method presented in [17] using LeNet on MNIST. b)
CIFAR-10 Top 1 validation error rate versus percentage of remaining non-zero
neurons on conv3 and fc4 using CIFAR10-quick.

mance of the network. In the following discussion, only results from group sparse

constraints are shown.

Comparison with l0 constraints on LeNet

Both [55] and [15] proposed to add l0 constraints to the parameters of a neural

network. They show that this performs quite well in the sense of zeroing out param-

eters. We apply this idea to remove neurons on LeNet and compare it with adding

tensor low rank and group sparse constraints. We use exactly the same setup as in

the paper and test the idea using the MNIST data set [3].

Following the idea of [55] and [15], given a parameter t, neurons whose magni-

tudes are among the largest t will be kept, other neurons will be set to zero during

the training process.

Figure 2.4 compares results of l0 constraints with the proposed tensor low rank

and group sparsity. For the experiment, t is chosen based on the number of non-
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Figure 2.4: (a) and (b) show the top 1 validation error rate versus the percentage of
non-zero neurons for the second convolutional layer and first fully connected layer
for LeNet respectively. We compare results of low rank constraints, group sparse
constraints and directly using l0 constraints.

zero neurons we got by using proposed sparse constraints under different weights.

Generally speaking, the proposed constraints perform better than the l0 constraints

for training the network. This is more obvious when we try to get more zero filters

for the first fully connected layer. One reason is that, without using any sparse

constraints, the norm of the neurons learned are distributed more compactly and

far from 0. As a result, directly setting some of the neurons to be zero is risky. The

distribution of absolute values of the parameters, even without adding any sparse

constraints, are more biased to 0, which explains why l0 constraint works well in [55]

and [15]. This can be seen form Figure 2.5, which shows the distribution of the norm

of the neurons and absolute values of parameters.
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Figure 2.5: (a) shows the distribution of norm of the neurons in first fully connected
layer for LeNet. (b) shows the distribution of the absolute value of the parameters
in the first fully connected layer for LeNet. The network is trained with one epoch
without adding sparse constraints.
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Compression for LeNet:

Figure 2.3 (a) shows the comparison of the proposed method with [17]. Since

[17] only adds sparse constraints on the first fully connected layer of LeNet (fc3),

we only show our results using group sparse constraints on fc3. The compression

rate and top 1 validation error are averaged over four results with different random

seeds. Since the two networks may be trained differently, we show the relative top

1 validation error rate, which is defined as the top 1 validation error rate of the

proposed method minus that without sparse constraints. A smaller value means

better performance. As shown in this figure, our method outperforms the one pro-

posed in [17] in both compression and accuracy. Please note that [17] predicts the

cut-off number of neurons for fc3 to be 440 and a drop of performance of 1.07%.

The proposed method, on the contrary, can remove 489 neurons while maintaining

the performance of the original one.

To improve the compression rate, we add group sparse constraints to the layers

containing most of the parameters in LeNet: the second convolutional layer (conv2)

and the first fully connected layer (fc3). We compare two strategies. First, adding

sparse constraints in a layer by layer fashion and second, jointly constraining both

layers. Empirically we found that the first strategy performs better. Thus, we first

add sparse constraints on fc3 and, after the number of zero-neurons in this layer is

stable, we add sparse constraints on conv2. We report the results of using group

sparse constraints. The weight used for fc3 is set to 100, and the weights for conv2

are set to 60, 80, 100. Table 2.3 summarizes the average results over the four runs of

the experiment. As shown, our method not only reduces significantly the number of
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τ Non-zero Neurons Number of Top-1 error (%)

conv1 conv2 fc3 conv1 conv2 fc3 Parameters

100 80 90 7 23 20 11820 0.72
100 120 80 7 13 21 7079 0.76
120 120 90 6 14 20 6980 0.81

Table 2.2: Results of adding group sparse constraints on three layers.

neurons, which leads to significant reduction in the number of parameters in these

two layers but also compresses the total number of parameters of the network for

more than 90%, leading to a memory footprint reduction larger than 1 MB.

We further try to add group sparse constraints on all three layers of LeNet to

check whether our method can work on more layers. To introduce more redundancy

on conv1 and conv2, we initialize the number of non-zero neurons for conv1 and

conv2 to be 100. Similar to adding sparse constraints on two layers, we add sparse

constraints layer by layer. We show some of our results in Table 2.2. To compare,

the best compression result of adding sparse constraints on conv2 and fc3 leads to

a model with 13062 parameters (third row of LeNet in Table 2.3). We find that by

adding sparse constraints on three layers, a more compact network can be achieved

though we initialize the network with more neurons.

2.4.2 CIFAR-10 quick on CIFAR-10

CIFAR-10 [59] is a database consisting of 50, 000 training and 10, 000 testing

RGB images with a resolution of 32 × 32 pixels split into 10 classes. As suggested

in [41], data is standardized using zero-mean unit length normalization followed by

a whitening process. Furthermore, we use random flips as data augmentation. For a
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fair comparison, we train the original network, CIFAR10-quick, without any sparse

constraints using the same training set-up and achieve a top 1 validation error rate

of 24.75%.

Since the third convolutional layer (conv3) and the first fully connected layer

(fc4) contain most of the parameters, we add sparse constraints on these two layers

independently. Figure 2.3 (b) shows the top 1 validation error rate versus the

percentage of remaining non-zero neurons. As shown, 20% and 70% of neurons

for conv3 and fc4 can be removed without a noticeable drop in performance.

To obtain the best compression results, we jointly constrained conv3 and fc4

as we did with LeNet. To this end, we first add the constraints on fc4, and then, we

include the same ones on conv3. We run the experiment for more epochs compared

to the default values in Matconvnet [41]. For a fair comparison, we train the baseline

(i.e., CIFAR-10 quick without sparse constraints) for the same number of epochs. As

a result, we obtain a top 1 validation error of 22.33%. We use this result to compute

relative top 1 validation error rate. The weight of group sparse constraints for fc4 is

fixed to 280 while the three different weights for conv3 are 220, 240, 280. A summary

of results is listed in the second part of Table 2.3. Through this experiment, it can

be seen that even for this simple network, we can remove a large number of neurons,

which leads to a great compression in the number of parameters. Considering that

there are only 64 neurons in each of these two layers, the compression results are

significant.
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Figure 2.6: ImageNet. Comparison between single layer results on fc6 and fc7
and the data-free method in [17] using AlexNet on ImageNet. Data-free results are
from [17].

2.4.3 AlexNet and VGG on ImageNet

ImageNet [62] is a dataset with over 15 million labeled images split into 22,000

categories. AlexNet [4] was proposed to be trained on ILSVRC-2012 [60] which is a

subset of ImageNet with 1.2 million training images and 50,000 validation images.

We use the implementation of AlexNet and VGG-13 provided by [61] in order to

test ImageNet on our cluster. Random flipping is applied to augment the data.

Quantitative results are reported using a single crop in the center of the image. For

comparison, we consider the network trained without adding any sparse constraints.

The top 1 validation error for this baseline is 45.57% and 37.50% for AlexNet and

VGG-13 respectively. For the rest of experiments we only report results using group

sparse constraints.

Figure 2.6 shows the top 1 validation error rate versus the percentage of non-

zero neurons for AlexNet. Group sparse constraints are added on the first and
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second fully connected layers (fc6 and fc7) independently. Results from [17] are

copied from their paper and shown in this figure for comparison. We show the

relative top 1 validation error rates because the training of two methods may be

different. This figure clearly shows that compared with [17], the proposed method

can remove a large number of neurons without decreasing the performance. For

instance, the best compression results of the proposed method can eliminate 76.76%

of all the parameters of AlexNet with a negligible drop in performance (0.57% in

top 1 validation error). The best performance model in [17], on the other hand, can

only remove 34.89% of the parameters with top 1 validation error rate decreased by

2.24%. A representative set of compression results obtained using sparse constraints

on two layers is shown in the third part of Table 2.3.

We test the proposed method on VGG-13 on the first fully connected layer

as it contains most of the parameters of the network. Table 2.4 summarizes the

outcomes of the experiment for different group sparsity weights. As shown, for

this state-of-the-art network structure, our method can eliminate nearly half of the

parameters and significantly reduce the memory footprint at the expense of a slight

drop in performance.

2.5 Summary

We proposed an algorithm to significantly reduce of the number of neurons in a

convolutional neural network by adding sparse constraints during the training step.

The forward-backward splitting method is applied to solve the sparse constrained
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τ Neurons pruned(%) Top-1 error (%) parameter memory

conv2 fc3 conv2 fc3 absolute relative reduction (%) reduced (MB)

LeNet 60 100 45.5 97.75 0.73 0.00 95.35 1.57
80 100 56.5 97.75 0.77 0.04 96.31 1.58
100 100 63.0 97.75 0.76 0.03 96.79 1.59

τ Neurons pruned (%) Top 1 error (%) parameters memory

conv3 fc4 conv3 fc4 absolute relative reduction(%) reduced (KB)

cifar10- 220 280 31.25 70.31 22.21 -0.12 47.17 268.24
quick 240 280 46.88 71.86 22.73 0.4 55.15 313.62

280 280 54.69 70.31 23.78 1.45 58.56 333.01

τ Neurons pruned (%) Top 1 error (%) parameters memory

fc6 fc7 fc6 fc7 absolute relative reduction (%) reduced(MB)

AlexNet 40 35 48.46 56.49 44.58 -0.98 55.15 128.26
45 30 77.05 60.21 46.14 0.57 76.76 178.52
45 35 73.39 65.80 45.88 0.31 74.88 174.14

Table 2.3: Results of adding group sparse constraints on two layers. The best
compression results within 1% decrease in top 1 error rate is shown in bold.

layer τ compression % memory top 1 error (%)
neurons parameters reduced (MB) absolute relative

fc1 5 39.04 35.08 178.02 38.30 0.80

fc1 10 49.27 44.28 224.67 38.54 1.04

fc1 20 76.21 61.30 311.06 39.26 1.76

Table 2.4: Some compression results of proposed method on fc1 for vgg-B. Neuron:
compression of neurons in the fc1. Parameter: compression of total parameters.

problem. We also analyze the benefits of using rectified linear units as the non-linear

activation function to remove a larger number of neurons.

Experiments using four popular CNNs including AlexNet and VGG-13 demon-

strate the capability of the proposed method to reduce the number of neurons, and

therefore, the number of parameters and memory footprint, with a negligible loss in

performance.
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Chapter 3: Label Denoising Adversarial Networks (LDAN) for In-

verse Lighting of Faces

Obtaining ground truth labels for real data is sometimes not just difficult, but

impossible. In this situation, synthetic data can be very helpful in training deep

CNNs, since they are easy to generate and ground truth labels are easy to get. In

this chapter, we study one of these problems: inverse lighting from a single face

image. This work [13] is in collaboration with Jin Sun, Yaser Yacoob and David W

Jacobs

3.1 Introduction

Estimating lighting sources from an image is a fundamental problem in com-

puter vision. In general, this is a particularly difficult task when the scene has

unknown shape and reflectance properties. On the other hand, estimating the light-

ing of a human face, one of the most popular and well studied objects, is easier due

to its approximately known geometry and near Lambertian reflectance. Lighting

estimation can be used in applications such as image editing, 3D structure estima-

tion, and image forgery detection. This chapter focuses on estimating lighting from

a single face image. We consider the most common face image type: near frontal
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pose. The same idea can be applied to face images with other poses.

There exist many approaches for lighting estimation from a single face im-

age [31, 63–65], however they are not learning-based and rely on complicated opti-

mization during testing, making the process inefficient. Moreover, the performance

of these methods (e.g., [31]) depends on the resolution of face images, and cannot

give accurate predictions for low resolution images.

Witnessing the dominant success of neural network models in other computer

vision problems such as image classification, we are interested in a supervised learn-

ing approach that directly regresses lighting parameters from a single face image.

Given an input face image, the approach outputs low dimensional Spherical Har-

monics (SH) coefficients [34,35] of its environment lighting condition. This is a very

difficult problem, especially due to the scarcity of accurate ground truth lighting

labels for real face images in the wild. In fact, building a dataset with realistic

images and ground truth lighting parameters is extremely hard and currently there

exists no such dataset.

Lacking ground truth labels, we propose to use synthetic data to help train a

deep CNN for real data. However, the network trained using synthetic data cannot

generalize well to real data due to the domain gap between synthetic and real data.

As a result, we also include real data to train a deep CNN together with the synthetic

data. We apply an existing method [31] to estimate lighting parameters of real face

images. However, these lighting parameters are not the real “ground truth” as they

contain unknown noise. Synthetic face images, on the other hand, have noise-free

ground truth lighting labels. In this work, we show that this synthetic data with
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accurate labels can help train a deep CNN to regress lighting of real face images:

“denoising” the unreliable labels.

The proposed method is based on two assumptions: (1) A deep CNN trained

with synthetic data is accurate, i.e., it is not affected by any noise; (2) Ground truth

labels for real data are noisy, but still contain useful information. We design the

lighting regression deep CNN, which consists of two sub-networks: a feature net that

extracts lighting related features and a lighting net that takes these features as input

and predicts the Spherical Harmonics parameters. Based on the first assumption,

the lighting net trained with synthetic data is accurate. However, this lighting net

expects lighting related features for synthetic data as input. To make it work for real

data, the lighting related features for real data should be mapped to the same space.

For that purpose, we utilize the idea of Generative Adversarial Networks (GAN) [32].

Specifically, a discriminator is trained to distinguish between lighting related features

from synthetic data and real data, while the feature net (instead of a generator in

the standard GAN) is trained to fool the discriminator. The discriminator and

our feature net play a minmax two player game, with the objective of pulling the

distribution of lighting related features of real data towards that of the synthetic

data. Under the second assumption, we have an additional objective of reducing

regression loss between predicted lightings and ground truth labels. Moreover, we

design the network to take 64 × 64 RGB face images so that it will work for low

resolution face images.

Figure 1.1 illustrates the proposed LDAN model. It consists of two steps

during training: (1) Train with synthetic data; (2) Fix the feature net for synthetic
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Figure 3.1: Two different functions that map data from the source domain to target
domain with similar adversarial loss. With additional regression loss, our model is
encouraged to learn a better behaved mapping function.

data and the lighting net, train another feature net for real data with adversarial loss

and regression loss. Eric et al. [66] proposed similar ideas, applying adversarial loss

to map the distribution of features from the source domain to the target domain.

However, they only use adversarial loss. We argue that such a mapping can be

unpredictably arbitrary. As illustrated by Figure 3.1, both mapping A to A′, B to

B′ and mapping A to B′ and B to A′ make the source and target data have similar

distributions. This may be correct for classification tasks if A and B belong to the

same class. However, for regression, mapping A to B′ takes the mapped feature far

away from where it should be. As a result, using the regression loss for real data

is critical in our regression problem: it regularizes the domain mapping function

to have reasonable behavior. At the same time, the noise in real data labels are

suppressed by training with the adversarial loss.

Since real ground truth labels for SH do not exist, we propose to use a clas-
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sification based method to evaluate the consistency of estimated SH. However, this

is still an indirect approach. To further evaluate the effectiveness of the proposed

method, and show its potential to other applications, we apply it to an object key

point regression problem where the ground truth labels are available. Similar to

lighting regression from faces, we apply an existing method [27] to get the noisy

ground truth and use synthetic data to help train an object key point regression

network. Evaluated using the real ground truth, we demonstrate that LDAN works

better than directly training a network with these noisy ground truth labels.

The main contributions of our work are: 1) We propose a lighting regression

network for face images; 2) We propose a novel method, LDAN, to utilize accurate

synthetic image lighting labels in training real face images with noisy labels; 3) The

proposed method: increases the accuracy by 9% compared to [31] on quantitative

evaluation, is robust to low resolution images, and is thousands of times faster.

3.2 Related Work

Lighting Estimation from A Single Face Image. Estimating lighting

conditions from a single face image is an interesting but difficult problem. Blanz

and Vetter [67] proposed to estimate the ambient and directional light as a byproduct

of fitting 3D Morphable Models (3DMM) to a single face image. Since then, several

3DMM based methods were proposed [63–65, 68, 69]. The performance of these

methods rely on a good 3DMM of faces. However, existing 3DMMs are usually

built with face images taken in a controlled environment, so their expressive power
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(especially the texture model) for faces in the wild is limited [70]. Barron and Malik

proposed an optimization based method for estimating shape, albedo and lighting

for general objects [31]. To solve such an underconstrained problem, their method

heavily relies on prior knowledge about shape, albedo and lighting of general objects.

Though they achieved promising results, their method is slow and may fail to give

reasonable results in some cases due to the non-convexity of the objective function.

[71] proposed to use deep learning to disentangle representations about pose, lighting

and identity of a face image. The authors only show the effectiveness of their method

on synthetic images, its performance on real face images is unclear. Recently, there is

a trend to disentangle real faces using deep CNNs [72–74]. These methods, however,

mainly focus on evaluating their performance on shape and albedo estimation. It is

not clear whether the lighting estimated by these methods are accurate.

Learning with Noisy Labels. Learning with noisy labels has attracted the

interest of researchers for a long time. [75] gives a comprehensive introduction to this

problem. With the development of deep learning, many research studies have now

focused on how to train deep neural networks with noisy labels [76–81]. [76,77,80,81]

assume the probability of a noisy label only depends on the noise-free label but not

on the input data, and try to model the conditional probability explicitly. [79] models

the type of noise as a hidden variable and proposes a novel probabilistic model to

infer the true labels. [78] proposes to use CNNs pre-trained with noise-free data to

help select data with noisy labels in order to better handle the noise. All the above

mentioned methods focus on classification problems and a considerable portion of

the data are assumed to have noise-free labels. However, estimating lighting from
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face images is a regression problem, and the translation probability from noise-free

label to noisy label is much more difficult to model. Moreover, the labels of our real

data are noisy. As a result, we are dealing with a much harder problem than the

methods mentioned above.

GAN for Domain Adaption. Since Goodfellow et al. [32] first proposed

Generative Adversarial Networks, several works have been using this idea for unsu-

pervised Domain Adaption [66,82–84]. All these methods solve a problem in which

the labels in the target domain are not enough to train a deep neural network.

However, the problem we try to solve is intrinsically different from theirs in that the

labels in the target domain are sufficient, but all these labels are noisy. Moreover,

all these methods apply domain adaption to classification tasks where adversarial

loss is enough to achieve a good performance. On the contrary, adversarial loss

alone cannot work in our regression task. Though adversarial loss could map the

distribution of data in the target domain to that of the source domain, for a single

point in the target domain, the mapping is arbitrary which is problematic as every

data point has its unique label in a regression task.

3.3 Proposed Method

3.3.1 Spherical Harmonics

[34, 35] have shown that for convex objects with Lambertian reflectance and

distant light sources, the lighting of the environment can be well estimated by 9

(gray scale) or 27 (color) dimensions of Spherical Harmonics (SH). In this chapter,
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we use SH as the lighting representation as it has been widely used to represent the

environmental lighting in face related applications as suggested in [31,65,69,85–87].

All dimensions of SH can be fully recovered from an image if the pixels are

equally distributed over a sphere. However, the pixels of a face image, loosely speak-

ing, are distributed over a hemisphere. The SH that can be recovered from a face

image, as discussed in [88], lie in a lower dimensional subspace, and the SH for faces

under different poses lie in different subspaces. As a result, we consider regressing

the SH in a lower dimensional subspace instead of the original 27 dimensional SH

and focus on near frontal faces since most face images are taken under this pose.

Taking the red color channel as an example, we now show how to get the

lower dimensional subspace of SH for near frontal faces. Let Ir be a column vector:

each element represents one pixel value of a face image for the red channel, then

Ir = ΛrY lr. Λr is a n×n diagonal matrix, each element of which is the albedo of the

corresponding pixel, lr is a 9 dimensional SH parameters vector, Y is a n×9 matrix

and n is the number of pixels in the image. Each column of Y corresponds to one

SH base image whose elements are determined by the normal of the corresponding

pixel (see [34]). By applying SVD on Y , we get Y = UDV T , then Ir = ΛrUDV
T lr.

V is a 9 × 9 matrix that spans the entire 9 dimensions of SH. We use synthetic

data to get V since we know the ground truth normal of every pixel and thus Y is

known. We then only keep the first 6 columns of V , denoted as V6, corresponding to

the largest 6 singular values since they capture 99% energy of the singular values.

With V6, we project all the SH to their 18 dimensional subspace throughout the

experiments.
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3.3.2 Label Denoising Adversarial Network

Training a regression deep CNN needs a lot of data with ground truth labels.

However, getting the ground truth lighting parameters from a realistic face image

is extremely difficult. It usually needs a mirror ball or panorama camera which is

carefully set up to record an environment map relative to the position of the face.

Instead, we adapted [31] to predict lighting parameters from a large number of face

images. These parameters are then projected to a lower dimensional subspace using

V6 discussed above. We use these projected lighting parameters as noisy ground

truth labels and denote them as ŷr. Together with real face images r, (r, ŷr) will

be used as (data, label) pairs to train a deep CNN to regress lighting parameters.

Because these labels are noisy, directly training a deep CNN with these data cannot

give the best performance.

We propose to use synthetic face images, whose ground truth lighting pa-

rameters are known, to help train a deep CNN. The proposed deep CNN has two

sub-networks: a feature network that is used to extract lighting related features and

a lighting network that takes lighting related features as input and predicts SH for

the face images. For synthetic data s, we denote its feature network as S and its

lighting network as L. Then the predicted SH is represented as ys = L(S(s)). Since

S and L are trained using synthetic data whose ground truth labels are known,

they are accurate. Feature network R and Lighting network Lr for real data, on

the other hand, will both be affected by the noisy labels if directly trained using the

noisy ground truth of real data. To alleviate the effect of noisy labels, we propose to
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use L as the lighting net for real data, i.e., Lr = L, since it is not affected by noise.

However, since L is trained using synthetic data, it only works if the input is from

the space of lighting related features of synthetic data. As a result, R needs to be

trained such that the lighting related features for real data will be mapped into the

same space as synthetic data.

Given a set of synthetic images s and their ground truth labels y∗s , we train

feature net S and lighting net L through the following loss function:

min
S,L

∑
(i,j)∈Ω

[(L(S(si))− y∗si)
2 + (L(S(sj))− y∗si)

2]︸ ︷︷ ︸
regression loss for synthetic

+λ(S(si)− S(sj))
2︸ ︷︷ ︸

feature loss

, (3.1)

where si and sj are a pair of synthetic images with the same SH lighting, different

IDs, and different small random deviations from frontal pose. y∗si represents their

ground truth label. Ω is a set containing all such pairs. λ is the weight for feature

loss. Besides the regression loss, we also add a MSE feature loss that enforces the

lighting related features of face images with the same SH to be the same. This

encourages the lighting related features to contain no information about face ID

and pose.

With trained S and L, we need to train the feature net R for real face images

r so that the lighting related features for real data (fr = R(r)) lie in the same space

as that of synthetic data (fs = S(s)). Our idea is inspired by recently proposed

Generative Adversarial Networks (GAN) [32], which have proved to be very effec-

tive to synthesize realistic images. In our setting, a discriminator D is trained to

distinguish fr and fs, whileR is trained so that fr would make D fail. By playing this
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minmax game, the distribution of fr will be close to that of fs. Wasserstein GAN

(WGAN) [89] is used as our training strategy since it can alleviate the “mode drop-

ping” problem and generate more realistic samples for image synthesis. However,

making the distribution of fr and that of fs similar is not enough for our regression

problem since the mapping can be arbitrary to some extent. As shown in Figure 3.1,

both these two mappings would make two sets of points have similar distributions,

but not both of them are correct since every point has its unique label. To deal with

this problem, we use the noisy ground truth of real data as “anchor points” during

training. As a result, the final loss function for our problem is defined as follows:

min
R

max
D

∑
i

(L(R(ri))− ŷri)
2

︸ ︷︷ ︸
regression loss for real

+µ (ES(s)∼Ps [D(S(s)]− ER(r)∼Pr [D(R(r))])︸ ︷︷ ︸
adversarial loss

(3.2)

where Ps and Pr are the distributions of lighting related features for synthetic and

real images respectively.

Following [32, 89], the discriminator D and feature net R are trained in an

alternating fashion. While training D, RMSProp [90] is applied and Adadelta [91]

is used to train S, R and L as discussed in [89]. The details on how to train the

whole model are illustrated in Algorithm 3.

48



Algorithm 3: Training procedure for LDAN

1: Train S and L for synthetic data using loss function in Equation 3.1 by Adadelta.
2: Compute lighting related features for synthetic images using fsi = S(si).
3: for number of training epochs do
4: for k=1 to 1 iterations do
5: Sample 128 fs and r. Train discriminator D through the following loss

using RMSProp:

max
D

Efs∼Ps [D(fs)]− ER(r)∼Pr [D(R(r))]

6: end for
7: for k=1 to 4 iterations do
8: Sample 128 r and train R through the following loss using Adadelta:

min
R

∑
i

(L(R(ri))− ŷri)
2 − µER(r)∼Pr [D(R(r))]

9: end for
10: end for

SIRFS log SIRFS SH REAL LDAN Model B Model C

top-1 (%) 60.72 56.04 61.29 (±1.8) 65.73 (±1.78) 56.62 (±3.86) 63.03 (±0.91)
top-2 (%) 79.65 74.39 81.95 (±1.3) 84.57 (±1.35) 76.94 (±4.10) 82.79 (±0.35)
top-3 (%) 87.27 83.74 90.59 (±0.7) 92.43 (±0.59) 86.69 (±3.39) 91.21 (±0.47)

Table 3.1: Accuracy of different methods. Standard deviation is shown in the paren-
theses for learning based methods.

3.4 Experiments

3.4.1 Data Collection

Real Face Images: The proposed LDAN requires a large number of both

synthetic and real face images for training. To collect the real face images, we

download images with faces from the Internet. The SIRFS method proposed by

Barron and Malik [31] is then applied to these face images to get the noisy ground

truth SH for lighting. Since SIRFS was proposed to estimate lighting for general
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objects, the prior they use is not face-specific. To get a better constraint for a face

shape, we apply Discriminative Response Map Fitting (DRMF) [92] to estimate the

facial landmarks and pose. Then, a 3DMM [67] is fitted to get an estimation of the

face depth map which is used as a prior to constrain the face shape estimation of

SIRFS. We collected 40, 000 faces with noisy ground truth SH for training.

Synthetic Face Images: We apply the 3D face model provided by [93] to

generate 40, 000 pairs of faces. Each pair of these faces are under the same lighting

but with different identities and a small random variation with respect to frontal

pose.

MultiPie: The MultiPie dataset [94] contains a large number of face images of

different IDs taken under different poses and illumination conditions. From this data

set, 4, 980 face images are chosen, which contain 250 IDs in frontal pose under 19

lighting conditions. Though the ground truth lighting parameters are not provided

for each of these face images, the lighting condition group under which a face image

is taken is given. This data is used only for evaluation in our experiments.

3.4.2 Implementation Details

We use the same network structure for feature net S and R. We apply the

ResNet structure [6] to define a feature net. It takes a 64 × 64 RGB face image as

input and outputs a 128 dimensional feature vector. We define our lighting net L

and discriminator D to be 2 and 3 fully connected layers respectively. The lighting

net outputs 18 dimensional lighting parameters and D outputs the score for being
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a lighting related feature of real data.

We show the structure of our networks in this section. As mentioned above,

we borrow the structure of ResNet [6] to define our feature net. Figure 4.5 (a) shows

the details. A block like “Conv 3×3, 16” means a convolutional layer with 16 filters,

the size of each filter is 3 × 3 × n where n is the number of input channels. This

convolutional layer is followed by a batch normalization layer and a ReLU layer. A

block like “Residual 3 × 3 32” means a residual block of two 3 × 3 convolutional

layers with skip connections: each of the two convolutional layers has 32 filters and

is followed by batch normalization and ReLU layer. “,/2” means the stride of the

first convolutional layer in residual block is 2. The output of the feature net is a

128 dimensional feature.

Figure 4.5 (b) shows the structure of the lighting net. “FC ReLU 128” means

a fully connected layer whose number of outputs is 128 followed by a ReLU layer.

“Dropout” means a dropout layer with dropout ratio being 0.5. “FC, 18” means a

fully connected layer with 18 outputs.

Figure 4.5 (c) shows the structure of the discriminator. “FC tanh, 1” means

a fully connected layer with one output followed by a tanh layer.

While training the proposed model, we first train discriminator D for 1 itera-

tion and then train feature net R for 4 iterations. We alternate these two steps for

25 epochs. We choose µ = 0.01, and λ = 0.01. Our algorithm is implemented using

Keras [95] with Tensorflow [96] as backend.
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(a) Feature net (b) Lighting net (c) Discriminator

Figure 3.2: (a), (b) and (c) show the structure of feature net, lighting net, and
discriminator used in our paper.
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3.4.3 Evaluation Metric

Since ground truth lighting parameters for real face images are not available, it

is difficult to evaluate the accuracy of regressed lighting quantitatively. We propose

an “indirect” quantitative evaluation metric based on classification, and test our

method on the MultiPie data set, which contains face images taken under 19 lighting

conditions. More specifically, after regressing the SH for each test face image, 90%

of them are used to compute the mean SH for each lighting condition. Then, each

of the rest of the face images are assigned to the 19 lighting conditions based on

the Euclidean distance between its estimated SH and the mean SH. We carry out

10 cross validations for this classification measurement to make use of all the data.

3.4.4 Experimental Results

To show the effectiveness of the proposed method, we compare our results

with the SIRFS [31] based method in this section. In SIRFS, the shading of a face

is formulated in logarithm space, i.e. log{si} = Yil where si is the shading at the

i-th pixel, Yi is the i-th row of Y and l represents the SH. l estimated in this way is

not the correct SH. To estimate the correct SH lighting, we assume that the normal

of each pixel estimated by SIRFS is in Euclidean space instead of logarithm space.

This assumption is reasonable since we adapted the SIRFS method by estimating

a face depth map using 3DMM in Euclidean space, and constrained the estimated

face shape to be consistent with it. Supposing l̂ is the correct SH, the shading can
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LDAN LDAN w/o Adversarial LDAN w/o Regression LDAN w/o Fixed Lighting Net

top-1 (%) 65.73 (±1.78) 63.63 (±2.12) 30.72 (±0.63) 63.95 (±0.60)
top-2 (%) 84.75 (±1.35) 83.44 (±1.57) 49.12 (±0.85) 83.97 (±0.25)
top-3 (%) 92.43 (±0.59) 91.48 (±1.09) 61.58 (±1.07) 92.07 (±0.46)

Table 3.2: Results of ablation study. Standard derivation is shown in the bracket.

be found by si = Yîl. Then l̂ can be found by solving the following equation:

Y l̂ = exp {Y l}. (3.3)

This is an over complete linear equation as the number of pixels is larger than the

dimension of SH.

Comparison with baselines. Table 3.1 compares the proposed method with

the SIRFS based method using the classification measurement on the MultiPie data

set. We denote the original output of the SIRFS method as SIRFS log, and SIRFS

SH is used to denote the corrected SH using Equation (3.3). We test these two

methods on the original resolution of the MultiPie data which is roughly 220× 270

after cropping the faces. REAL in Table 3.1 represents our baseline method which

uses SIRFS SH as ground truth to train a deep CNN without synthetic data. REAL

and LDAN are trained 5 times and the mean accuracies are shown in Table 3.1. We

notice that SIRFS SH, which solves Equation (3.3) based on SIRFS log, performs

worse than SIRFS log. According to Equation (3.3), the accuracy of SIRFS SH

depends not only on the accuracy of SIRFS log, but also on the accuracy of estimated

normals. The noisy estimation of normals would make the performance of estimated

SIRFS SH more noisy. The performance of REAL is better than SIRFS SH, though
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Figure 3.3: Two models we use to compare with the proposed LDAN. Different
from LDAN, Model B uses the same feature net for synthetic and real data; Model
C trains feature nets for synthetic and real data together.

it is trained directly using the output of SIRFS SH as the ground truth label. This

shows that by observing a large amount of data, the deep CNN itself can be robust

to noise to some extent. This is an advantage for learning based methods compared

with optimization based algorithms. LDAN outperforms REAL by more than 4%

and SIRFS SH by more than 9% for top-1 accuracy, showing the effectiveness of the

proposed method.

We further propose two other baselines to compare with LDAN as shown in

Figure 3.3. Different from LDAN, Model B and Model C learn the feature nets

for synthetic and real data simultaneously and map the lighting related features of

them to the same space. These two models are inspired by [82] and [84]. For Model

B, synthetic and real data share the same feature net. Since synthetic data and real

data are quite different from each other, using a single feature net it is difficult to

make their lighting features have the same distribution, and we do not expect good

performance. Model C defines different feature nets for synthetic and real data. The
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(a) (b) (c) (d)

Figure 3.4: First row: MultiPie face image, rendered synthetic face with SIRFS es-
timated lighting and rendered synthetic face with LDAN estimated lighting. Second
row: the hemisphere visualization of the corresponding estimated lightings. Images
are best viewed on screen.

difference between Model C and LDAN is that Model C tries to map lighting related

features for synthetic and real data to the same space, which might be different from

that learned with synthetic data alone, whereas LDAN tries to directly map lighting

related features of real data to the space of synthetic data. Intuitively, compared

with LDAN, Model C is more easily affected by the noisy labels of real data since

the training of the feature net for synthetic data is affected by the real data.

Model B and C are also trained 5 times and their mean accuracies are shown

in Table 3.1 for comparison. We notice that Model B performs even worse than

REAL, which shows that a single feature net for both synthetic and real data is not

enough. LDAN and Model C outperform all other methods in Table 3.1. Moreover,

LDAN performs better than Model C, showing that it is more robust to the noise

in the labels of real data.

Ablation Study. To investigate the effectiveness of adversarial loss and re-

gression loss, we carry out ablation studies for LDAN. We train the feature net 5

times for real data without adversarial loss or regression loss respectively and com-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: First row: CelebA face image, rendered synthetic face with SIRFS esti-
mated lighting, and rendered synthetic face with LDAN estimated lighting. Second
row: the hemisphere visualization of the corresponding estimated lightings. Images
are best viewed on screen.

pare the results with LDAN in Table 3.2. Without adversarial loss, the performance

of LDAN is better than REAL in Table 3.1, which means that synthetic data can

help to regress lighting in this case. Without regression loss, on the other hand,

the performance of LDAN drops dramatically. This is because the mapping of the

distribution of lighting related features of real data to that of synthetic data is ar-

bitrary as shown in Figure 3.1. This is problematic for a regression task where each

data has its unique label. Having noisy ground truth as “anchor points”, as we do

in LDAN, can alleviate this problem and give much better results. We also train

LDAN without fixing the lighting net and show the results in Table 3.2. We notice

that the performance is similar to training LDAN without adversarial loss. This is

expected since the lighting net will be trained to adapt to the noisy labels, reducing
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Method LDAN SIRFS SH

Resolution 64× 64 32× 32 16× 16 64× 64

top-1 (%) 65.73 (±1.78) 64.89 (±1.65) 61.72 (±1.72) 42.17
top-2 (%) 84.75 (±1.35) 84.39 (±1.33) 82.17 (±1.01) 61.94
top-3 (%) 92.43 (±0.59) 92.10 (±0.74) 90.94 (±0.81) 74.51

Table 3.3: Accuracy of LDAN for different scales of face images.

the impact of the adversarial loss.

Visualizing Estimated Lighting. Figure 3.4 and Figure 3.5 visualize the

SH parameters estimated by SIRFS, and LDAN from MultiPie images and the

CelebA [97] data set respectively. Note that for visualization purposes, we show the

images cropped by bounding boxes instead of images cropped by facial landmarks.

Though there are few images with strong side light effects, we notice that LDAN

can still work reasonably well for such images as shown in Figure 3.4 (b) and (d).

However, the predicted lightings are not as sharp as those by SIRFS. This is mainly

because the performance of learning based methods are heavily dependent on the

training data. Without sufficient face images with strong side light for training,

the performance of LDAN on those images may not be optimal. We notice that

the lighting predicted by SIRFS can have incorrect directions (Figure 3.5 (a) (b)

(c) and (d) as well as Figure 3.4 (c)). One of the reasons is the effect of the hair.

Since the facial landmark detection method is not perfect, some of the hair regions

are included in the cropped face images, and this confuses SIRFS. Moreover, some

lighting predicted by SIRFS have the incorrect color tone, especially for faces with

dark reflectance, as shown in Figure 3.5 (e) (f) (g) and (h). On the other hand, our

learning based method, LDAN, is not affected by these two issues.
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Robustness to Low Resolution Images. To investigate the robustness

of the proposed method for low resolution images, we downsample face images of

MultiPie to 32× 32 and 16× 16 and then resize them to 64× 64 and evaluate the

lighting classification accuracy using our trained LDAN model. Table 3.3 shows the

performance of LDAN on low resolution face images. We notice that the trained

model is quite robust to low resolution images, even for face images with size 16×16,

the top-1 accuracy only drops 4% compared with the original resolution (64× 64).

To compare, we also run SIRFS on 64 × 64 face images. Since we cannot run

3DMM on lower resolution images to get a good initialization directly, we fit the 3D

model on the original resolution and then resize it accordingly. We notice that the

performance of SIRFS drops a lot (14%) even on 64× 64 images.

Running Time. We run experiments on a workstation with 4 Intel Xeon

CPUs and 80 GB memory. While running on a GPU, we use one NVIDIA GeForce

TITAN X. For a 64×64 RGB face image, SIRFS [31] takes 47 second to predict the

lighting parameters. The proposed deep CNN can predict 390 such face images on

the CPU and 2, 400 face images on the GPU per second, so it is potentially 100, 000

times faster.

3.4.5 Object 2D Keypoints Detection

synthetic regression fine-tune LDAN 3DINN [27] regression gt

31.90% 69.61% 76.12% 79.66% 81.95% 90.57%

Table 3.4: PCK value at α = 0.1 for different methods. We notice that LDAN
outperforms regression and fine-tune.
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Figure 3.6: Illustration of the network for keypoints regression.

Since ground truth lighting is hard to obtain, to better quantitatively check

the effectiveness of the proposed method, we further apply LDAN to object 2D

keypoint detection, which has ground truth labels. The keypoint-5 dataset provided

by 3DINN [27] has ground truth labels for 2D keypoints of sofa, chair, bed and swivel

chair. [26] provided synthetic images of sofa and chair and their corresponding labels.

Since 3DINN has achieved very high accuracy on the chair data set, we focus on

using sofa to test our method.

Proposed Method for 2D Keypoint Regression

Similar to the lighting regression formulation, let us denote S as the feature

network for synthetic data, R as the feature network for real data, and L as the

regression network. Specifically, we use Lj to represent the regression network for

the j-th keypoint, where j = 1, 2, ..., 14. Using (si,y
∗
si) as (data, ground truth label)

pair for synthetic data, and yj∗si to represent the ground truth location of the j-th

keypoint. We train the feature net S and regression net L using the following loss

function:

min
S,L

∑
i,j

(Lj(S(si))− yj∗si )
2. (3.4)
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Note that since we do not have two sofa images that have exactly the same 2D

keypoints, we ignore the feature loss.

After training S and L, we fix S and L and train the feature net R with real

data together with a discriminator D. Suppose ri represents the i-th real data and

ŷri represents its corresponding noisy label. More specifically, letting ŷjri represent

the location of j-th keypoint, we train R and D using the following loss function:

min
R

max
D

∑
i,j

(Lj(R(ri))− ŷjri)
2

︸ ︷︷ ︸
regression loss for real

+µ (ES(s)∼Ps [D(S(s)]− ER(r)∼Pr [D(R(r))])︸ ︷︷ ︸
adversarial loss

(3.5)

where µ = 0.05 and Ps and Pr are the distributions of keypoints related features for

synthetic and real images respectively.

Training Details.

To mimic noisy labels, we apply the code provided by 3DINN to predict the

keypoints of sofa, and then double the noise of these labels so they contain more

noise. Supposing l∗ is a ground truth location of a keypoint (a 2 dimensional vector)

and l′ is the keypoint location predicted by 3DINN, we double the noise in the label

l′ and get l̂ = 2l′−l∗. Unless otherwise specified, we use l̂ as noisy labels to train

networks. Different from 3DINN, we formulate keypoint detection as a regression

problem. Similar to our LDAN model, the network is designed to have a feature

network and regression network. Inspired by [27], we define a separate regression

network for each keypoint, resulting in 14 different regression networks as illustrated

in Figure 3.6. Following [26], we normalize the keypoint location by the width and
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(a) Feature net (b) Regression net (c) Discriminator

Figure 3.7: (a), (b) and (c) show the structure of feature net, keypoint regression
net, and discriminator used in our system.

height of the image, so that the (x, y) coordinates of each 2D keypoint are within

[0, 1]. We resize each of the images from the dataset to be 256 × 256. Our feature

net takes a 256 × 256 image as input and outputs a 16 × 16 × 512 tensor as the

feature vector. Our regression network takes this feature as input and predicts the

2D location of the corresponding keypoint. Figure 3.7 (a), (b), and (c) shows the

structure of the feature net, regression net and discriminator separately. The notion

of each block is the same as those in Figure 4.5.

Experiments We use the Percentage of Correct Keypoints (PCK) metric

[98] to evaluate the accuracy. A 2D keypoint prediction is correct if it lies within

a radius α ∗ L of the ground truth, where L is the diagonal of the image with

0 < α < 1. Following [27], we show the PCK curve with the value of α between
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Figure 3.8: PCK curve of real sofa images for different methods.

0.0 and 0.2 in Figure 3.8. We also show the PCK value at α = 0.1 (as in [26]) in

Table 3.4 and compare it with several reasonable baselines: (1) Training the network

using real data with the noisy label (“regression”); (2) Training the network using

synthetic data and testing it on real data (“synthetic”); (3) Fine tune the network

trained on synthetic data using real images with the noisy labels (“fine-tune”).

We also show the performance of 3DINN and performance of training the network

using real data with real ground truth labels as supervision as references (“3DINN”

and “regression gt”, both are trained with real ground truth). These results show

that the proposed method works better than other methods that train with noisy

labels, including directly training the network and fine-tuning on it. This shows the

effectiveness of the proposed method.
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3.5 Summary

In this chapter, we propose a lighting regression network to predict Spherical

Harmonics of environment lighting from face images. Lacking the ground truth

labels for real face images, we applied an existing method to get noisy ground truth.

To alleviate the effect of noise, we propose to apply the idea of adversarial networks

and use synthetic face images with known ground truth to help train a deep CNN for

lighting regression. Compared with existing methods, the proposed method is more

efficient and can predict more consistent Spherical Harmonics from different faces

taken under the same lighting. Due to a lack of direct measurement of estimated

Spherical Harmonics, we further apply the proposed method to regress 2D keypoints,

for which ground truth labels are provided. Our experiments further demonstrate

the effectiveness of the proposed method.
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Chapter 4: Deep Single-Image Portrait Relighting

In this chapter, we introduce a single image portrait relighting algorithm.

Given a source portrait and a target lighting condition, the proposed method can

generate a new portrait image under the target lighting condition. Due to the lack

of an “in the wild” dataset that is suitable for this task, we apply physical based

rendering to generate a large scale, high resolution, “in the wild” dataset. A deep

CNN is then trained using the proposed dataset. Our experiments demonstrate that

the proposed method can generate high resolution relighted images accurately.

This work [99] is in collaboration with Sunil Hadap, Kalyan Sunkavalli and

David W. Jacobs.

Figure 4.1: Our algorithm takes a portrait image and a target lighting as input and
generates a new portrait image.
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4.1 Introduction

Portrait relighting is one of the most interesting and important applications

of image editing. The goal of the this work is to design an automatic single-image

portrait relighting algorithm, which takes a portrait image and a target lighting as

input and generates a new portrait image under the target lighting condition.

There are physically-based relighting methods that explicitly reconstruct the

face geometry, reflectance, and lighting and then re-render this reconstruction using

a novel lighting [72, 100–104]. However, single image face reconstruction is still an

open problem, and even the state-of-the-art methods have strong errors, e.g., inaccu-

rate estimation of face geometry. These errors can propagate into the relighting and

lead to poor results. As a result, while these relighting methods are generally good

at capturing lighting variations, they may contain artifacts that prevent them from

looking realistic. In this work we leverage this property: we use a physically-based

relighting method to generate a large-scale training dataset, and then use it to train

a generative network to reproduce them while imposing an adversarial loss based

only on real photographs. The supervised reconstruction loss allows the network to

learn how to relight, while the adversarial loss ensures that the results are on the

manifold of real photographs and do not have the errors due to the physically-based

relighting method.

We first propose a ratio image [105] (RI) based rendering algorithm to generate

a large scale, high resolution, “in the wild” deep portrait relighting dataset (DPR).

In this algorithm, an image under a target lighting condition can be represented as
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the ratio of the target shading and source shading, multiplied by the source image.

Face normals and SH lighting of the source image are estimated by 3DDFA [106] and

SfSNet [104] respectively. A novel As-Rigid-As-Possible [107] based warping method

is then proposed to accurately align the estimated face normal to the portrait image.

Spherical Harmonics (SH) [34,35] lighting is then randomly sampled from a lighting

prior dataset [102] to relight the portrait image. We apply our proposed RI based

algorithm to the high resolution CelebA dataset (CelebA-HQ) [108] and generate

138,135 relighted 1024× 1024 portrait images with known SH lighting.

An hourglass network [33] is trained using the proposed DPR dataset for the

portrait relighting task. It takes a source image and a target lighting as input and

generates the relighted image. It also predicts the SH lighting for the source image

using the features from the bottleneck layer to disentangle lighting information from

the source image. We notice that the skip connections in the hourglass network

prevent the bottle neck layer from learning meaningful facial information. A simple

skip training strategy is then proposed to enforce facial information in the bottleneck

layer, which can improve the quality of the generated images. Our network is first

trained on 512 × 512 images and then fine tuned on 1024 × 1024 images. To the

best of our knowledge, the proposed method can generate relighted images at the

highest resolution among all deep learning based algorithms. We test the proposed

method qualitatively on our proposed DPR dataset and flicker portrait dataset [1]

and quantitatively on the MultiPie dataset [94]. All these experiments demonstrate

that the proposed method can achieve state-of-the-art results both qualitatively and

quantitatively.
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To reiterate, the contributions of the proposed method are threefold. First,

we propose a ratio image based algorithm to generate a large scale, high resolution

“in the wild” deep portrait relighting dataset. A novel As-Rigid-As-Possible based

warping method is proposed to align the face normals accurately with the face

image. Second, we design an automatic single-image portrait relighting algorithm

which takes a source image and target SH lighting as input and generates a face

image under the target lighting. Third, our trained network can generate 1024 ×

1024 relighted portrait images, which, to the best of our knowledge, is the highest

resolution among all deep learning based portrait relighting methods.
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4.2 Related Work

Quotient Image for Portrait Relighting Shashua and Riklin-raviv [105] pro-

posed to use the quotient (ratio) image for portrait relighting. They require mul-

tiple reference images as input and assume all these images are in frontal view.

Stoschek [109] extended the ratio image to arbitrary pose by aligning facial land-

marks of the source and target image. Wen et al [110] proposed to render a new

image using the ratio of the radiance environment map. [111] proposed to apply ratio

images to real time portrait illumination editing. However, their method requires

capturing images of a static subject using a Light Stage apparatus. Due to the

success of ratio images in portrait relighting applications, we apply this technique

in our data preparation pipeline.

Inverse Rendering of Portrait Images Starting with the 3D Morphable Model

(3DMM) [67], many inverse rendering methods for portrait images have been pro-

posed [72, 100–104, 112, 113]. These methods decompose a portrait image into re-

flectance, normal and lighting. A relit portrait image can then be rendered by

changing the lighting and keeping the normal and reflectance fixed. [100–102] are

optimization based method, which are time consuming. [72,103,104,112,113] are all

deep learning based methods. Compared with optimization based methods, they

are more time efficient. However, due to the complexity of inverse rendering, all

these methods can only work on low resolution images. On the contrary, our pro-

posed method, focusing on portrait relighting, can be designed to generate very high

resolution (1024× 1024) images.
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Photo and Portrait Style Transfer Photo and portrait style transfer [1,114–116]

takes a source image and a reference image as input and transfers the style of the

reference image to the source image. Since lighting can be treated as a kind of style,

these methods can also be applied in portrait relighting applications. To generate

a high quality portrait image, these methods usually require a high quality, non-

occluded reference image that contains the desired lighting with a different subject as

input, which limits the possible application scenarios. Different from these methods,

our proposed method is a single-image based algorithm, lighting is specified as input

and no reference image is required.
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4.3 Deep Portrait Relighting Dataset

In this section, we introduce the Deep Portrait Relighting (DPR) dataset,

which is a large scale, high resolution, “in the wild” image dataset generated for

portrait relighting purposes. DPR is built on the high resolution CelebA dataset

(CelebA-HQ) published by [108], which contains 30,000 face images from the CelebA

[97] dataset with 1024× 1024 resolution. We remove images on which the landmark

detector [117] fails to detect landmarks, resulting in 27,627 images in the DPR

dataset. For each of these images, we randomly select 5 lighting conditions from

a lighting prior dataset [102] to generate relighted face images, leading to 138,135

relighted images.

4.3.1 Ratio Image to Relight Faces

We propose a ratio image based algorithm for data generation. Optimization

based inverse rendering methods are either too slow [101, 102] or cannot generate

high resolution images [72, 104]. Portrait style transfer methods, such as [1, 116],

require a reference image as target light source, which is not flexible. To render

a face image I, we need the reflectance R, normal N and lighting L. We further

assume that the reflectance of human face is Lambertian. A face image I can thus

be represented as:

I = R� f(N,L), (4.1)
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where � represents the element-wise product and f is the rendering function. To

relight a face image, we apply the ratio image trick proposed in [105]. According

to Eq 4.1, the same face under two different lighting conditions L and L∗ can be

represented as I = R� f(N,L) and I∗ = R� f(N,L∗). We know that

I∗ = R� f(N,L∗) (4.2)

=
R� f(N,L∗)

R� f(N,L)
(R� f(N,L))

=
f(N,L∗)

f(N,L)
I.

As a result, a portrait image I∗ under lighting L∗ can be generated given portrait

image I and its normal and lighting.

4.3.2 Normal Estimation

There are many research studies target at estimating normals from portrait

images. We use 3DDFA [118] 1 since it outputs the shape parameters of a 3DMM,

which can be used to generate portrait normal images at arbitrary resolution. Al-

though 3DDFA takes facial expression into consideration while fitting 3DMM, the

normals estimated still cannot be acccurately aligned with the the portrait image.

We believe this is due to the limited power of the 3DMM to model variations of

face geometry, as 3DMM is built on a limited number of faces. To better align

the estimated normals with the portrait image, so as to avoid possible artifacts

in the relighted images, we propose a As-Rigid-As-Possible (ARAP) based normal

1Code provided by [106]
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Figure 4.2: ARAP based normal refinement.

refinement algorithm.

4.3.2.1 ARAP Based Normal Refinement

Figure 4.2 illustrates the procedure of the ARAP based normal refinement

algorithm. Using the 3DMM parameters predicted by 3DDFA [106], a mesh can be

created. The “reflectance” image of the portrait can be obtained by projecting the

generic reflectance map of the 3DMM model onto this mesh. 2 We then apply [117]

to detect 68 facial landmarks on this “reflectance” image. These 68 detected facial

landmarks, together with evenly sampled 198 points along the boundaries of the

image are combined as “anchor points” and are used to create a triangle mesh

on the reflectance image using Delauny Triangulation. Similarly, a triangle mesh

is created for the portrait image. An As-Rigid-As-Possible transformation [107]

(ARAP) is then applied to warp the triangle mesh of the “reflectance” image to the

portrait image. The estimated warp function by ARAP is then applied to the face

2Note that this is not the real reflectance image of the portrait, and it is just used to help refine
face normals.
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(a) (b) (c)

Figure 4.3: We show the original face overlaid with normals estimated by 3DDFA
[106] in (a) and our refined normals in (b). The second row of (a) and (b) show the
right eye region.

normals estimated by 3DDFA to get refined normals as illustrated in Figure 4.2. To

demonstrate the effectivenss of the proposed normal refinement method, we overlay

the normals estimated by 3DDFA [106] and our refined normals with the original

image, and show them in Figure 4.3 (a) and (b) respectively. It is clear that the

quality of the alignment of normals w.r.t. portrait image at the eye and mouth has

been improved significantly through our proposed normal refinement method.

We notice that our proposed ARAP normal refinement method cannot improve

the misalignment of the ear and neck regions. This is because 3DMM cannot model

the deformation of ear and neck well, and, to the best of our knowledge, there is

no landmark detection algorithm for ears and necks. As a result, we remove the

ear and neck regions from the refined normals to avoid possible artifacts in relighted

images. In order to get a full normal image, we solve a Poisson equation to fill in the

missing normals for ear, neck, mouth and background region as suggested by [72].

Figure 4.3 (c) shows the normals after filling the missing region.
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Figure 4.4: First column is the original image, second to forth columns in the first
row are relighted images generated by our rendering pipeline, the second row shows
the half sphere rendered using the corresponding SH lighting.

4.3.3 Relighting Images

For a portrait image I∗, we apply our method to estimate normals N and use

SfSNet [104] to estimate SH lighting L∗. Then a target SH lighting L is randomly

sampled from the lighting prior dataset [102]. Eq 4.3 is then used to generate the

relighted face image I. Due to the ambiguity of the color between lighting and

reflectance, we apply the rendering pipeline to the luminance channel and keep the

color of the portrait image unchanged. We show some examples of relighted face

image in Figure 4.4.
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Figure 4.5: Our network takes a portrait image and a target SH lighting as input
and outputs the SH lighting of the input portrait image and generates a new, relit
portrait image using the target SH lighting.

4.4 Method

In this section, we introduce our proposed deep learning based single-image

portrait relighting algorithm. We design an hourglass network for this task and use

the DPR dataset created in the section 4.3 to train the network.

4.4.1 Main architecture for portrait relighting

Figure 4.5 shows the structure of our proposed hourglass network [33]. It

has an encoder and a decoder part. Four skip connections are used to connect the

features at different scales in the encoder part to their corresponding scale in the

decoder part. To relight a face, our network takes a face image I and a target lighting

L∗ as input. The encoder extracts features Z which is divided into two parts: face

feature Zf which is independent of lighting; and lighting feature Zs. Zs is then fed

into a lighting regression network to predict the lighting L of the input face image

I. The target lighting L∗ is then mapped to the lighting feature Z∗s. Zf and Z∗s are
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concatenated together and fed into the decoder part to generate the relighted face

image.

4.4.2 Supervision for training the network

As discussed in Section 4.3, our data preparation process generated 5 relighted

images with known ground truth lighting for each image in CelebA-HQ dataset. To

generate one training data, we randomly select one source image Is and one target

image It and their corresponding ground truth SH lighting Ls and Lt from these 5

relighted images. Our network then takes source image Is and target lighting Lt as

input and generates L∗s and I∗t . Ls and It are used as ground truth to supervise the

training. We apply an L1 loss for generated portrait image I∗t and an L2 loss for the

predicted lighting L∗s. An L1 loss is further applied to the gradient of I∗t to preserve

edges and avoid possible blurry effect:

LI =
1

NI

(||It − I∗t ||1 + ||∇It −∇I∗t ||1) + (Ls − L∗s)
2, (4.3)

NI is the number of pixels in the image.

Since our “ground truth” images are generated using the ratio image trick, they

may contain some artifacts due to inaccurate estimation of face normal or lighting.

We thus propose to use a GAN loss to improve the quality of the generated images.

As these artifacts mostly appear locally, we use a patch GAN [119] to force the

distribution of local image patches to be close to that of a natural image. We follow

the implementation of [119] (lsgan [120]) and use an MSE criterion for our GAN
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loss:

LGAN = EI(1−D(I))2 + EIsD(G(Is,Lt))
2, (4.4)

where I is the real image, and G and D represent our relighting network and dis-

criminator respectively. We use 1 as a label for real images and 0 as a label for fake

images. While training, we use the images from FFHQ dataset [121] as real images

in our GAN loss since images in this dataset contain more lighting variations.

A feature matching loss is further proposed to increase the the accuracy of

the relighted portrait image. More specifically, same images under different lighting

conditions should have the same face features, we thus define a feature loss as:

LF =
1

NF

(Zf1 − Z∗f2)2, (4.5)

where Zf1 and Z∗f2 are face features of Is1 and Is2, and NF is the number of elements

in feature Zf .

4.4.3 Skip Training

When the Hourglass network is trained end-to-end (denoted as vanilla Hour-

glass), we notice that most of the facial information is passed through skip layers.

Our facial feature Zf , on the other hand, contains little facial information. We thus

propose a skip training strategy in which we train our network without skip connec-

tions first, then add skip layers one by one during subsequent training. We denote

this as skip training. Figure 4.6 compares the relighted images generated by remov-
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Figure 4.6: From left to right: output without skip layer S4, output without S4/S3,
output without S4/S3/S2, output without S4/S3/S2/S1. Top row: vanilla Hourglass
network, bottom row: Hourglass network with skip training.

(a) (b) (c) (d)

Figure 4.7: (a) output of vanilla Hourglass network, (b) rectangle region of (a), (c)
output of Hourglass network with skip training, (d) rectangle region of (c). We
increase the pixel intensity of (b) and (c) for visualization purpose.

ing the skip layers of vanilla Hourglass network and Hourglass network with skip

training. We can see that with the skip training strategy, more facial information

is kept in the feature layer. Figure 4.7 further demonstrates that skip training can

help improve the quality of the generated results by removing artifacts around the

nose. In the following discussion, unless otherwise specified, our network is trained

with skip training.
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4.4.4 Implementation Details

We discuss the implementation details of the proposed method in this section.

4.4.4.1 Network Structure

h1, h2, h3, h4 are down-sampling layers followed by residual blocks defined

in [6]. h5, h6, h7 and h8 are designed as residual blocks [6] followed by upsampling

layers. s1, s2, s3 and s4 are defined to be residual blocks [6]. For convenience,

we defined one convolutional block as one convolutional layer followed by a batch

normalization layer and ReLU activation. c1 is designed to have one convolutional

block. c2 is designed to have three convolutional blocks (denoted as c2 1, c2 2, c2 3)

followed by one convolutional layer (denoted as c2 o). More details of these blocks

are shown in Table 4.1. Note that the output of h4 has 155 channels, from which

128 channels belong to face features Zf and 27 channels belong to lighting feature

Zs.

h1 h2 h3 h4 h5 h6 h7 h8

input channel number 16 16 32 64 155 64 32 16
output channel number 16 32 64 155 64 32 16 16

filter size 3 3 3 3 3 3 3 3

s1 s2 s3 s4 c1 c2 1 c2 2 c2 3 c2 o

input channel number 64 32 16 16 1 16 16 16 16
output channel number 64 32 16 16 16 16 16 16 1

filter size 3 3 3 3 5 3 1 1 1

Table 4.1: Details about each block of our network.

The lighting prediction network, which takes Zs as input and predicts L, is
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defined as an average pooling layer followed by two fully connected layers whose

number of channels are 128 and 9 respectively. The network that maps target light-

ing L∗ to lighting features Z∗s is defined as two fully connected layers whose number

of channels are 128 and 27. The 27 dimensional lighting feature is then repeated

spatially so it has the same spatial resolution as Zs as illustrated in Figure 4.8.

repeat	

Figure 4.8: Illustration of repeating lighting feature spatially.

4.4.4.2 Training Detail

The overall loss for our network is a linear combination of the losses mentioned

in Sec. 4.4.2:

L = LI + LGAN + λLF , (4.6)

where λ = 0.5. Our network is trained for 14 epochs. We add our feature loss

LF after 10 epochs. For skip training, we train our network without any skip
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Figure 4.9: Network structure for 1024× 1024 images.
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connections for 5 epochs, and add skip connections one at each epoch after the fifth

epoch, until all skip layers are added. We first train our network with images of

resolution 512× 512; most of our experiments are carried out under this resolution.

Finally, we fine tune our trained network using images with resolution 1024× 1024

with a simple modification. More specifically, an additional down sampling and up

sampling layer is added to make our network compatible with 1024 × 1024 images

as shown in 4.9. We train our network from scratch using the Adam optimizer [122]

with default parameters.
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4.5 Experiments

In this section, we evaluate our proposed method both quantitatively and

qualitatively and compare it with some of the state-of-the-art methods. Since our

network can predict lighting, it can be used in two ways for portrait relighting: (A)

Given a source image Is and a SH lighting Lt, generate an image It (denoted as SH-

based way). (B) Given a source image Is and a reference image If , extracting SH

lighting Lt from If and use it to relight Is to get It (denoted as image-based way).

Our network is designed to be used as (A). Due to that reason, when the target SH

lighting It is known (e.g. our DPR dataset) we use (A) for our relighting task. For

datasets such as MultiPie [94], in which ground truth SH lighting is unknown, we

use (B) for relighting.

4.5.1 Dataset and Evaluation Metric

Dataset: We demonstrate the effectiveness of the proposed method on the test set

of our proposed DPR dataset. However, due to lack of real ground truth, we cannot

evaluate the accuracy of the relighted images using this dataset. We thus propose

to use the MultiPie dataset [94] for quantitative evaluation. The MultiPie dataset

contains images of the same person under different lighting conditions, which can be

used as source and target image pair. Each MultiPie image is formed by lighting with

a dominant point light source, while the lighting conditions of most “in the wild”

portrait images are diffuse. We thus generate images under 7 lighting conditions by

averaging 3 to 4 original face images from MultiPie, so as to generate images under

83



more realistic, diffuse lighting conditions. We created 440 groups of images from

our generated face images, each of which contains a source image Is, a target image

It and a reference image If . Is and It are images with the same identity but with

different lighting conditions, It and Ir are images of different identities but with the

same lighting condition. When evaluating, a relighting algorithm takes Is and If as

input and predicts It.

Evaluation metric: Since lighting is ambiguous up to a scale (e.g., longer exposure

time may lead to a SH with high energy under the same lighting conditions), we

propose to use a scale invariant Mean Squared Error (Si-MSE) [31] to evaluate the

error between the generated image I∗t and the ground truth image It.

Si-MSE =
1

NI

min
α

(It − α ∗ I∗t )
2, (4.7)

where α is a scalar and NI is the number of pixels in the image. To further check

whether the generated image portrays the target lighting, we run SfSNet [104] to

extract the lighting Lt and L∗t from It and I∗t respectively, and compute the scale

invariant L2 (Si-L2) distance between Lt and L∗t . We choose to use SfSNet [104]

since it is proven to work well at predicting consistent lighting for face images under

the same lighting condition.

4.5.2 Ablation Study

To demonstrate the effectiveness of the GAN loss and feature loss, we show the

quantitative and qualitative results of our network trained using LI , LI +LGAN and
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Si-MSE Si-L2

LI 0.00504 0.1307
LI + LGAN 0.00658 0.1686

LI + LGAN + Lf 0.00590 0.1444

Table 4.2: Ablation Study on MultiPie Dataset

Figure 4.10: From left to right: first row: the input image, images generated using
LI , LI + LGAN and LI + LGAN + Lf ; second row: red rectangle region of the
corresponding image in the first row. Note the edge in the middle of the noise
generated using LI .
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LI + LGAN + Lf (i.e. full model) in Table 4.2 and Figure 4.10. We notice that with

GAN loss, the accuracy of our trained network is worse than the network trained

without GAN loss. This is because the GAN loss is used to make the distribution of

the generated images closer to that of the real images, i.e. improve the visual quality

of the generated images. Adding the GAN loss may distract the network training

process from being closer to the “ground truth” images. However, Figure 4.10

shows that with GAN loss, the artifacts on the nose part are alleviated compared

with the network trained without GAN loss. This demonstrates the effectiveness

the GAN loss in improving the visual quality. Adding a feature loss Lf significantly

improves the accuracy of the images generated by our model, as shown in Table 4.2.

We believe this is because our feature loss can force the generated images of the

same identity to have similar latent features, thus, better preserving the identity

information in the generated images. Moreover, Figure 4.10 shows that feature loss

does not affect the quality of the generated images. As a result, we conclude that

our full model can achieve a good balance between the accuracy and quality of the

generated images.

4.5.3 Comparison with the Rendering Pipeline

Our proposed ARAP based normal refinement method improves the misalign-

ments of face normals as discussed in Section 4.3. However, there are still cases in

which the face normals cannot perfectly align with the face image, especially at the

nose and the mouth region. These misalignments can cause ghost effects on the nose
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(a) (b) (c) (d) (e) (f)

Figure 4.11: (a) original image, (c) results RI based rendering, (e) our results. (b),
(d) and (f) show the red rectangle region of (a), (c) and (d) respectively. Note that
the proposed method removes the ghost effect and artificial highlights.

Si-MSE Si-L2

Li et al [115] 0.01322 0.3939
Shih et al [1] 0.01513 0.3415

Shu et al [116] 0.01384 0.3908
SfSNet [104] 0.00659 0.1593

Proposed Method 0.00590 0.1444

Table 4.3: Evaluation MultiPie Dataset

and artificial highlights at the corner of the mouth as shown in Figure 4.11. Though

our training data contains images with these artifacts, Figure 4.11 shows that these

artifacts can be avoided by the proposed method. This is because a deep learning

based method can regularize the results, avoiding outlier effects.

4.5.4 Comparison with State-of-the-art Methods

In this section, we compare the proposed method with [1,104,115,116], which

can do portrait relighting. Since there is no ground truth lighting for images in

the MultiPie dataset, we use an image-based method to evaluate our proposed
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method and SfSNet [104] on this dataset, i.e., target lighting is extracted from the

reference image and used for relighting. Both the proposed method and SfSNet [104]

use their own lighting estimation method to extract the target lighting. [116] and [1]

are two state-of-the-art portrait style transfer methods. They take two images Is

and If as input and transfer the style of Is to If . To get the relighted image using

these two methods, we transfer Is and If from RGB image to Lab image, and only

apply their algorithm on the L channel. [115] is designed for general photo style

transfer, and similar to [116] and [1], we use the L channel for portrait relighting.

We quantitatively compare the performance of our proposed method with these

methods on the MultiPie dataset and show the results in Table 4.3. Our proposed

method achieves the state-of-the-art results on both Si-MSE and Si-L2 metric. This

demonstrates that the proposed method can accurately generate relighted images

under the target lighting condition. [116] and [1] both require accurately detected

facial landmarks. The built-in facial landmark detector [123] of [116] fail to detect

landmarks of 90 testing face images, thus we exclude those results when computing

the Si-MSE and Si-L2 for [116] in Table 4.3. We show some examples of relighted

faces in the MultiPie dataset in figure 4.12.

We visually compare the proposed method with these state-of-the-art methods

on DPR dataset and show results in Figure 4.5.4. Since the target lighting is known

in this dataset, we apply a SH-based method to evaluate the proposed method

and SfSNet [104]. We see that although SfSNet [104] can generate images under

the correct lighting condition, their results are of low quality. Also, SfSNet [104]

works on 128 × 128 images, which is too small for portrait relighting applications.
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source reference ground truth proposed SfSNet [104] Shih et al [1] Shu et al [116] Li et al [115]

Figure 4.12: Visual results of the proposed method and state-of-the-art methods on
MultiPie.

Furthermore, SfSNet cannot deal with the background correctly, making the results

visually unpleasant. [1], [116] and [115] do not generate images under the correct

lighting in these examples. These three methods are all reference image based, when

the reference image is of low quality (e.g. occluded by hair region or sunglasses),

they fail to understand the lighting correctly. As a result, they cannot generate

images with accurate lighting conditions. We believe this is the common drawback

for all methods which require a reference image as input. On the contrary, the

proposed method and SfSNet [104] can directly take the target lighting as input, no

referene image is required. Moreover, we notice that [1] and [116] cannot generate

attached shadows on the nose, whereas the proposed method can generate very

natural attached shadows.

From these experiments, we conclude that the proposed method outperforms

the state-of-the-art methods both quantitatively and qualitatively, demonstrating

the effectiveness of the proposed method.

89



(A)

(B)

(C)

reference/target SH input our SfSNet [104] Shih et al [1] Shu et al [116] Li et al [115]

Figure 4.13: Qualitative comparison of the proposed method with state-of-the-art
methods. The first column in (A) (B) and (C): first row is the reference image,
second row is the target SH. The second column in (A), (B) and (C) shows the
input image, third to seventh columns show the results of our method, SfSNet [104],
Shih et al [1], Shu et al [116] and Li et al [115].
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4.5.5 Results on challenging images

In Figure 4.5.5 we show our results on some challenging images. We notice

that the proposed algorithm performs well on images with non-frontal faces, faces

with occlusions and even faces with makeup.

4.5.6 Visual Results on High Resolution Images

We fine tune our network on 1024 × 1024 images and test the trained model

on the flicker portrait dataset [1]. Figure 4.15 shows some of the results.
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Figure 4.14: Some challenging examples. The first row shows the target SH lighting.
The first column of the remaining rows shows the input image, the other columns
show relighted images by the proposed method under target SH lighting. Our pro-
posed method can deal with non-frontal faces, faces with occlusions and faces with
makeup well.
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Figure 4.15: Results on flicker portrait dataset [1]. The first column shows the input
image, the remaining columns show our relighted images using the corresponding
target lighting.
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4.6 Summary

In this chapter, we proposed an automatic single-image portrait relighting

algorithm. We first apply a ratio image based relighting algorithm to generate a large

scale, high quality, “in the wild” deep portrait relighting dataset. We then design a

hourglass network that takes a source portrait image and a target lighting as input

and generate a relighted portrait image. We train our network on the proposed DPR

dataset, and find that deep network training can regularize the results, removing the

artifacts in relighted images generated by ratio image based relighting. Moreover,

our network can generate images with resolution 1024×1024. Extensive experiments

demonstrate the effectiveness of the proposed method.
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Chapter 5: GLoSH: Global-Local Spherical Harmonics for Intrinsic

Image Decomposition

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.1: Top row: result of [2]. [2] takes an RGB-D image as input and pre-
dicts: (b) reflectance, (c) shading, (d) normal, (e) lighting. Bottom row: result of
our method. It takes an RGB image as input and predicts: (g) reflectance, (h)
shading, (i) normal and (j) lighting. The red boxes show that our algorithm cor-
rectly predicts cast shadows and highlights to shading while [2] incorrectly predict
them to reflectance. Our lighting (j) captures local lighting variation better than
(e) from [2].

In this chapter, we introduce our research work: intrinsic image decomposition

from a natural scene. Different from conventional methods that decompose an image

into reflectance and shading, the proposed method further decomposes shading into

geometry (normal) and lighting. A Global-Local Spherical Harmonics is proposed to

model the lighting of a natural scene. Due to the lack of real labels for reflectance,
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shading and lighting, synthetic data is used for this problem. We demonstrate the

power of our proposed lighting model and synthetic data through experiments.

This work [124] is in collaboration with Xiang Yu and David W. Jacobs.

5.1 Introduction

Understanding the physical world that produces an image is a core problem in

computer vision. [125] first proposed to estimate the intrinsic scene characteristics

from images, including range, orientation, reflectance and incident lighting. This is

a notoriously difficult inverse problem as it is highly under-constrained. Moreover,

we lack models of the physical components of the problem, such as lighting, that are

both accurate and easy to use. Early works start with investigating the reflectance,

shape and illumination of a single object [31,126], as the lighting for a single object is

easier to model, for instance, by using a single set of low dimensional Spherical Har-

monics [34,35]. The lighting of a natural scene, however, is much more complicated

due to its spatial variation caused by shadow, inter-reflection and the presence of

light sources in the scene. As a result, most works that address scenes have lumped

normal and lighting together as shading, and try to recover that, known as intrinsic

image decomposition.

In this work, we propose a new representation of lighting for scenes, which al-

lows us to disentangle lighting and surface normals, while also recovering reflectance.

One way to model lighting is Spherical Harmonics (SHs) [34,35], which approximates

the lighting with 9 low frequency components. While this works well for modeling
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the lighting of small objects, such as faces [34], such a global lighting cannot capture

the spatially varying lighting in a complex scene, as shown in Figure 2 (e). Allowing

independent lighting in each pixel, however, creates too many degrees of freedom

and would allow lighting variation alone to explain the image.

To overcome the problem, we propose a Global-Local SHs (GLoSH) lighting

model. Our global SH represents the holistic lighting of the entire scene. On top of

it, the local SHs, produced by the sum of global SH and local residual SHs, account

for the spatial variation of the lighting. An L2 regularization on the local residual

SHs limits the effects of over-parameterization. Figure 5.2 (c) shows our GLoSH

and Figure 5.2 (f) shows the reconstructed shading, which is much closer to ground

truth than only using global SH.

Spherical Harmonics with arbitrary coefficients would represent lighting in a

physically unrealistic way, if the lighting is negative in some directions. Nevertheless,

enforcing non-negative SH lighting is not trivial. Existing methods either introduce

many more parameters to constrain non-negative lighting [34] or require solving a

semi-definite programming problem [127], which is difficult to directly incorporate

with deep networks. In this work, we propose to sample the intensity of the lighting

uniformly distributed on a sphere generated from the predicted SH. A non-negative

loss is then defined on the sampled lighting. Our non-negative constraint is only

applied to global SH, because practically the local residual SHs regularized by L2

are not likely to change the sign of the lighting.

We apply a CNN to achieve an end-to-end coarse-to-fine solution. Training

deep CNNs requires huge amounts of data and ground truth labels, and labeling
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(a) synthetic image (b) global SH (c) GLoSH

(d) GT shading (e) shading w.r.t. (b) (f) shading w.r.t. (c)

Figure 5.2: Visualization of global SH modeling (b) and its reconstructed shading
(e), comparing to our GLoSH (c) and its reconstructed shading (f). With GLoSH,
clearly our method generates the shading much closer to ground truth.

images for reflectance and lighting is extremely difficult. Intrinsic Images in the

Wild (IIW) [128] labels the relative darkness of the reflectance from pairs of pix-

els. Shading Annotations in the Wild (SAW) [129] labels constant shading regions,

shadow boundaries and depth/normal discontinuities. However, these datasets only

provide sparse labels and a limited number of images. Inspired by the recent success

of synthetic data on computer vision applications, we propose to use the synthesized

SUNCG dataset [130], in which ground truth reflectance, normal and shading can

be easily determined, to pre-train the models. The pre-trained model is then further

trained with real data in a self-supervised way.

To sum up, we propose a Global-Local Spherical Harmonics (GLoSH) lighting

model, and apply a coarse-to-fine CNN structure to predict GLoSH together with

reflectance and normal. The synthetic data pre-training and self-supervised training

with real data lead to state-of-the-art performance across three real scene datasets,
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IIW, SAW and NYUv2. The contributions of our work are the following.

1. We propose a GLoSH lighting model with global and local SHs, and a novel

non-negative constraint to estimate physically realistic lighting.

2. To the best of our knowledge, under a single RGB image setting, we are the

first to apply CNNs to jointly estimate reflectance, normal and lighting.

3. We propose a coarse-to-fine network that is compatible with our proposed

global-local lighting model.

4. Our method achieves the best results on IIW reflectance, the second best

on SAW shading, and strongly competitive performance on NYUv2 normal.

Notice that the state-of-the-art methods only focus on one or two components,

while our method jointly estimates reflectance, normal and lighting.
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5.2 Related Work

Intrinsic Image Characteristics. We categorize the literature into two main

streams: single object based and natural scene based methods. Researchers have

long been studying the estimation of intrinsic image characteristics for a single ob-

ject. For example, shape from shading [131, 132] focuses on recovering the shape

assuming illumination and reflectance are known. Photometric stereo [133] esti-

mates geometry from multiple images assuming known lighting. Recent progress

in photometric stereo [126] can estimate geometry and lighting up to a bas-relief

transformation [134]. [135–137] proposed to decompose a single object image into

its reflectance and shading. [31] and [138] proposed to jointly estimate reflectance,

shape and lighting from a single object image.

Estimating a natural scene is more difficult due to more complicated geometry

and lighting. Recent studies [139,140] show the capability of accurately estimating

the scene geometry thanks to large scale training data and the success of deep

learning. Some advanced methods [2, 128, 141–144] proposed optimization based

approaches to decompose an image into reflectance and shading, where [2, 141,142]

require depth to be known. Most recent work [145–154] applies deep Convolutional

Neural Networks (CNN) on this task and achieves impressive performance. [153]

proposed to render realistic synthetic data and then use it to train the deep models

and adapt to the real dataset. Our work follows a similar idea. However, we not

only estimate reflectance and shading, but also further decompose the shading into

normal and lighting.
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Barron and Malik [2] first proposed to estimate reflectance, depth/normal and

lighting with RGB-D images. They model the lighting at each pixel as a linear

combination of eight sets of Spherical Harmonics. In contrast, we jointly esti-

mate reflectance, surface normals and lighting from a single RGB image without

depth, which is a much harder problem. Moreover, we propose our Global-Local

SHs (GloSH) with a coarse-to-fine neural network to represent the lighting for each

pixel, which accounts for not only the holistic lighting but also the local lighting

variations.

Non-negative Spherical Harmonics. While using Spherical Harmonics lighting,

one challenge is how to enforce lighting to be non-negative. [34] proposed to rep-

resent lighting using a non-negative linear combination of delta functions to solve

this problem. One drawback of this method is that to have an accurate represen-

tation, a lot of delta functions are needed. [127] proved that the Toeplitz matrix of

a non-negative SH is positive semi-definite. They proposed to solve a semi-definite

programming (SDP) problem to enforce non-negative lighting. However, the SDP

constraint is not obviously tractable to incorporate with deep training. In contrast,

we formulate a non-negative lighting loss by sampling hundreds of points on a pre-

dicted lighting sphere, which is computationally efficient and fits into the network

training smoothly.
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5.3 Reflectance, Normal and Shading from a Single RGB Image

Intrinsic image decomposition assumes an image I to be the product of re-

flectance R and shading S, i.e, I = R � S, where � represents an element-wise

product. Most research studies focus on decomposing an image I into R and S,

where geometry and lighting remain entangled in shading. In our work, we propose

to further decompose shading S into surface normal (i.e, geometry) N and lighting

L. Assuming S = Ψ(N,L), an image I can be represented as

I = R�Ψ(N,L), (5.1)

Ψ is a rendering function. Our target is to estimate R, N and L given a single

image I.

5.3.1 GLoSH Lighting Modeling

While a single, global set of low-dimensional SH have been used to represent

lighting of objects, this would be unable to capture the complex lighting condi-

tions of a scene. On the other hand, estimating SHs for each pixel easily falls into

over-parameterization. We propose a neural network based Global-Local Spherical

Harmonics (GLoSH) model, where global SHs serve as the low frequency approxi-

mation of the lighting, and local SHs residuals count for spatial variation. A coarse-

to-fine neural structure is designed to exactly execute the global and local lighting

modeling.
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5.3.1.1 Global and local Spherical Harmonics

Following [34, 35], we propose to use SH up to the second order, resulting in

a 9 dimensional SH for each color channel. Denote the global SH as Lc ∈ R9. Lc is

predicted from our coarse level network

As revealed in Figure 5.2, based only on the global SH Lc, the shading is

far from satisfactory, lacking much spatial variation. To better model the spatial

variation of the lighting, we predict local SH residuals for each pixel in a fine level

network. Our local SH is then formulated as global SH with the local SH residuals:

Lf = Lc + δLf , (5.2)

where δLf represent the local residual SH predicted by a fine scale network.

5.3.1.2 Non-negative Constraints on SH

Physically realistic lighting requires non-negative SH lighting, which previous

work [2, 31] do not properly consider. To enforce the non-negative SH lighting,

we propose a simple yet effective constraint on SH. According to [34], given a SH

coefficient Lc, the lighting intensity at a direction (θ, φ) is a function of Lc, i.e,

fL(Lc, θ, φ). A non-negative lighting means fL(Lc, θ, φ) ≥ 0,∀0 ≤ θ ≤ π, 0 ≤ φ ≤

2π. Based on this, we uniformly sample the value of the function fL on a unit

sphere and constrain all the sampled values to be non-negative. The non-negative
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loss function is thus defined as

LLc =
1

K

K∑
i=1

min(0, fL(Lc, θi, φi))
2, (5.3)

K is the number of directions sampled from the sphere. We apply the above non-

negative constraint to global SH. We further apply the L2 regularization over the

local residual SH:

LLf = ‖δLf‖2
2. (5.4)

This regularization penalizes their L2 norm, encouraging the local lighting to not

vary too much from the global lighting.

Our experiments demonstrate that Equation 5.4 together with non-negative

constraint on global SH is sufficient to guarantee the non-negative lighting for local

SH.

5.3.2 Coarse-to-fine Network Structure

!R S

+

+

R+

Input

Normal Normal

Re�ectance Re�ectance

Light Shading Light Shading

+ Pixel-wise add

R Render

S Stack channel

Coarse Net Fine Net

Figure 5.3: Our coarse-to-fine network structure. The coarse net predicts the first
level reflectance, lighting and surface normal, of which the latter two form the
shading. The fine net takes the previous stacked output as input and predicts the
residual of reflectance, lighting and surface normal. The final reflectance, lighting
and normal are recovered by adding the predicted residual with the first level results.
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To exactly match the proposed GLoSH lighting modeling, we design a coarse-

to-fine network structure shown in Figure 5.3. The coarse network is defined as

a hourglass network [155]. It takes an image x ∈ R64×64×3 as input and predicts

reflectance Rc ∈ R64×64×3, normal Nc ∈ R64×64, and global SH Lc ∈ R9. Shading

Sc ∈ R64×64×3 can be constructed by a simple rendering function.

Sc = Ψ(Nc,Lc) (5.5)

The fine scale network is designed with fully convolutional structures. It takes

x ∈ R128×128×3, upsampled Rc ∈ R128×128×3,Nc ∈ R128×128,Sc ∈ R128×128×3 as input

and predicts residual maps. The recovered local reflectance, normal and local SHs

are:

Rf = Rc + Φ
Rf

f (Rc,Nc,Lc),

Nf = Nc + Φ
Nf

f (Rc,Nc,Lc), (5.6)

Lf = Lc + Φ
Lf

f (Rc,Nc,Lc),

where, Φ
Rf

f , Φ
Nf

f and Φ
Lf

f represent the fine level network for reflectance, normal

and lighting respectively. The fine scale shading is calculated by Equation 5.5 Sf =

Ψ(Nf ,Lf ). The fine scale network structure can be recurrently applied to a finer

scale. Our full model is defined to have three scales, which can predict reflectance,

normal and lighting with resolution 256× 256. Please refer to Section 5.4 for more

details of the network structure.
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5.3.3 Supervision on Training

It is difficult to obtain dense accurate ground truth annotation for reflectance,

normal and lighting. We thus leverage the rendered synthetic data for the supervised

pre-training. The pre-trained network is then fine-tuned using sparsely annotated

real data (IIW [128], SAW [129] and NYUv2 [156]) in a self-supervised way, i.e,

applying the pre-trained model to provide pseudo ground truth labels for fine-tuning.

5.3.3.1 Reflectance

In the pre-training stage, we directly apply the ground truth reflectance to

guide the training in a fully supervised way, where L1 loss is applied as shown in

Equation 5.7.

LR1 = ‖R−R∗‖1 + ‖∇R−∇R∗‖1. (5.7)

R is the predicted reflectance and R∗ is the corresponding ground truth. More-

over, similar to [153], we add supervision to the gradient of the reflectance to en-

courage the predicted reflectance to be piece-wise smooth.

For real data, there is no dense annotation for either reflectance, normal or

lighting. Instead, IIW [128] provides sparse ordinal reflectance judgments. Given a

pair of reflectances R1 and R2, the label indicates whether R1 is darker than (lighter

than or equal to) R2 (demoted as J = 1, J = −1 and J = 0 respectively) with a

confidence score w. We use the WHDR hinge loss proposed in [146] as the loss for
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reflectance in real images:

LR(R1,R2, J) = (5.8)

w



max
(

0, R1

R2
− 1

1+δ+ξ

)
if J = 1

max

0,


1

1+δ−ξ −
R1

R2

R1

R2
− (1 + δ − ξ)

 if J = 0

max
(

0, (1 + δ + ξ)− R1

R2

)
if J = −1

We set δ = 0.12 and ξ = 0.08 during training as in [146]. Notice that the above loss

is not symmetric, i.e, LRi
(R1,R2, J) 6= LR(R2,R1,−J). We thus adapt the above

loss and define the modified WHDR loss as:

LR2 = LR(R1,R2, J) + LR(R2,R1,−J) (5.9)

5.3.3.2 Normal

The ground truth normal for synthetic data and part of the real data (NYUv2)

are available. For those data in which ground truth normals are available, we define

the loss as

LN = −NTN∗ + ‖∇N−∇N∗‖1 (5.10)
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Similar to reflectance regularization in Equation 5.7, we further apply the first order

derivative smoothness term to encourage the normal to be piece-wise continuous.

5.3.3.3 Shading

There is no supervision for lighting. The non-negative constraint and the L2

regularization are all unsupervised losses. Applying rendering to generate shading

S = Ψ(N,L) from normal and lighting, we use the supervision on shading and

normal discussed in Sec. 5.3.3.2 to indirectly supervise the lighting. The supervised

signal for shading is similar to that of reflectance:

LS1 = ‖S− S∗‖1 + ‖∇S−∇S∗‖1 (5.11)

where S and S∗ are predicted shading and its ground truth.

For real images, SAW [129] provides annotation for smooth shading regions

and shadow boundaries. We thus apply the same loss as in [153] for the shading:

LS2 = λcsLconstant−shading + Lshadow (5.12)

where λcs = 10 and Lconstant−shading and Lshadow are the loss for constant shading

region and shadow boundary defined in [153].
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5.4 Network Structure

Overall our framework can be divided into three scales. We employ a hourglass

network [155] for the first scale network and a fully convolutional structure for second

and third scale networks. Details are discussed in the following for the three scale

network structures.

Network of First Scale. The first scale network takes a 64 × 64 image as input

and predicts 64 × 64 reflectance Rc, normal Nc, and a single global Lighting Lc.

Shading Sc can be constructed based on Nc and Lc. The branches used to predict

reflectance and normal have the same hourglass network structure [155], which is

illustrated in Figure 5.4 (a). The branch to predict global SH is shown in Figure 5.4

(b). The green blocks are shared by all the three branches.

(a)
C1 

I D1 D2 U1 U3 U2 
C3 C2 

S3	

S2	

S2	

C4 

(b)
C1 

I D1 D2 C2 C3	 C4	 AP	 FC	

Figure 5.4: (a) shows the network structure to predict reflectance and normal and
(b) shows the network structure for predicting global SH.

In Figure 5.4, C1, C2, C3, and C4 represent convolutional layers. D1, D2, I,

U1, U2, U3, S1, S2, S3 are residual blocks defined in [6]. AP is an average pooling

layer and FC represents a fully-connected layer. Each of the convolution layers

is followed by batch normalization [157] and ReLU except for the output layer.
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D4 D1 D2 D3 D5 C1 

F1 F2 F3 

C2 C3 

Figure 5.5: Network structure to predict reflectance, normal and lighting at second
and third scale.

Table 5.4 shows the detailed definition of the block in Figure 5.4. Since we predict

9 Spherical Harmonics for each channel of the global SH, the number of output

channels for global SH is 27.

C1 C2 C3 C4 D1 D2 I U1 U2 U3 S1 S2 S3 FC

(a)

input channel number 3 64 32 3 64 128 256 248 256 128 64 128 256 -
output channel number 64 32 3 3 128 256 248 256 128 64 64 128 256 -

filter size 5 3 3 3 3 3 3 3 3 3 3 3 3 -
input feature size 64 64 64 64 64 32 16 8 16 32 64 32 16 -

output feature size 64 64 64 64 32 16 8 16 32 64 64 32 16 -

(a)

input channel number 3 16 64 - 64 128 256 - - - - - - 128
output channel number 64 64 128 - 128 256 16 - - - - - - 27

filter size 5 3 3 - 3 3 3 - - - - - - -
input feature size 64 8 4 - 64 32 16 - - - - - - -

output feature size 64 4 2 - 32 16 8 - - - - - - -

Table 5.1: Details of each block in our network. (a) shows the details about each
block in Figure 5.4 (a) and (b) shows the details about each block in Figure 5.4 (b).

Network of Second and Third Scale. Our second and third scale network has

the same network structure. Our second network works on images with resolution

128 × 128 and our third network works on images with resolution 256 × 256. We

define the network to predict residuals of reflectance, normal and lighting using

separate networks with no shared layers.

The network structure is illustrated in Figure 5.5. C1, C2, C3, F1, F2, F3
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are convolutional layers, D1, D2, D3, D4, D5 are residual blocks defined in [6].

Each convolutional layer is followed by a Batch Normalization layer [157] and ReLU

except for the output layer.

Table 5.4 (a) shows the detailed definition of each block for networks used to

predict residual reflectance and normal. Table 5.4 (b) shows the detailed definition

of each block for networks used to determine local residual SHs. For reflectance, we

concatenate the image and the upsampled reflectance from the coarse network as

input, so the number of input channels is 6. Similarly, we concatenate the image and

upsampled normals from the coarse network as input for the network for normals.

The number of input channels is also 6. For the network used to predict local SHs,

we concatenate the image, upsampled normal, reflectance and shading as input. As

a result, the number of input channels for local SHs prediction is 12. Since we

predict the color SH for each pixel, the number of output channels is 27.

C1 C2 C3 D1 D2 D3 D4 D5 F1 F2 F3

(a)

input channel number 6 32 3 32 32 32 64 32 16 32 32
output channel number 16 3 3 32 32 64 32 32 32 32 32

filter size 5 3 3 3 3 3 32 32 1 1 1
dilation size 1 1 1 1 2 4 1 1 1 1 1

(b)

input channel number 12 32 3 32 32 32 64 32 16 32 32
output channel number 16 3 27 32 32 64 32 32 32 32 32

filter size 5 3 3 3 3 3 32 32 1 1 1
dilation size 1 1 1 1 2 4 1 1 1 1 1

Table 5.2: Details about each block in our second and third scale network shown
in Figure 5.5. (a) shows the detailed structure for the network used to predict
reflectance and normal. (b) shows the detailed structure for the network used to
predict lighting.
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5.5 Implementation Details

Pre-training on Synthetic Data: We first train our network using the SUNCG

dataset with synthesized ground truth normal, reflectance, and shading. The loss

to train our network on synthetic data is

Ls = λsRLR1 + λsSLS1 + λsNLN + λLcLLc + λLfLLf (5.13)

where LR1, LS1, LN , LLc and LLf are losses for reflectance, shading, normal, global

and local residual lighting defined above, and λsR, λsS, λsN , λLc and λLf are their

corresponding weights. We set λsR = λsS = λsN = λLc = 1 and λLf = 0.2. Our

coarse-to-fine network is trained step by step using the Adam [122] optimizer with

initial learning rate 0.001 and weight decay 0.

Fine-tuning on Real Data: Due to the lack of annotation from real datasets,

we use the rendered SUNCG dataset as supervision, with the loss denoted as Lcgr .

In addition, we apply our network trained on synthetic data to predict reflectance,

shading and normal of real images and use the results as pseudo supervision (self-

supervision), with the loss denoted as Lssr .

Lcgr = λcgsRLR1 + λcgsSLS1 + λcgsNLN + λcgLcLLc + λcgLfLLf ,

Lssr = λssrRLR1 + λssrSLS1 + λssrNLN + λssLcLLc + λssLfLLf (5.14)

where we set λcgsR = λcgsS = λcgLc = λcgLf = 1, λcgsN = 10, λssrS = λssrN = 5, λssLf = λssLc = 1
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and λssrR = 0.1. Our loss defined on the annotation and ground truth of IIW, SAW

and NYUv2 is:

Lor = λorRLR2 + λorSLS2 + λorNLN (5.15)

where λoLc = λorN = 10, λorS = 1. Inspired by [128], we introduce the L2 regularization

to achieve a reasonable color for reflectance.

Lcr = ‖ R
1
3

∑
c Rc

− I
1
3

∑
c Ic
‖1 (5.16)

where R and I are predicted reflectance and input image, and Rc and Ic, c ∈

{R,G,B} denote the color channel of R and I. Importantly, a reconstruction loss

is further introduced to guarantee the predicted reflectance, normal and lighting

preserve the input’s characteristics.

Lrcr = ‖Ii −Ri � Si‖2 (5.17)

The overall loss that we apply to fine-tune our network on real images is:

Lr = Lcgr + Lssr + Lor + Lcr + λrcr Lrcr (5.18)

where λrcr = 0.1. The coarse-to-fine network is fine tuned scale by scale. The Adam

optimizer with learning rate 0.0005 and weight decay 0.00001 is used for fine-tuning.
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5.6 Experiments

In this section, we introduce the synthetic dataset that we create for pre-

training and the public real datasets. Then we compare to Barron and Malik [2],

who first proposed to predict reflectance, normal and lighting from an RGB-D image.

Further, we compare to the state-of-the-art intrinsic image decomposition methods

to indicate the overall advantage of our method. An ablation study is then carried

out to demonstrate the contribution of each of our proposed modules.

5.6.1 Datasets

Synthetic Dataset: we make use of the SUNCG dataset [158] to generate syn-

thetic data. It contains 568, 793 images rendered using Mitsuba [159] and their

corresponding ground truth surface normals, depths, semantic labels and object

boundaries. Since our task also requires ground truth reflectance and shading, we

re-render 58, 949 images of SUNCG using the multi-channel renderer of Mitsuba.

We further split the images into a set of 51,507 training images and a set of 7,442

validation images. Instead of directly rendering images, we render shading by set-

ting all the materials to diffuse and the reflectance to be 1. Then the final image

is I = R � S. We believe rendering in this way has two main advantages: (1) The

generated images strictly follow the assumption of intrinsic image decomposition.

(2) The pixel value of ground truth shading has bounded range which makes data

preparation easier. Though the rendered images do not contain non-diffuse effects

of the material, our experiments show that this does not degrade the performance.
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(a) (b) (c) (d)

Figure 5.6: (a) synthetic images, (b) shading images, (c) and (d) are lighting pre-
dicted by training the network without and with non-negative constraint respec-
tively.

[2] GLoSH SUNCG GLoSH SUNCG + real

MSE 0.098 0.038 0.032

Table 5.3: SH lighting Evaluation on SUNCG synthetic data.

Public Real Datasets: we use IIW [128], SAW [129] and NYUv2 [156] as real data

for training and testing. More specifically, SAW is a combination of IIW and NYUv2

(3761 images from IIW and 381 images from NYUv2 with ground truth normals).

The real dataset we use is the same as [153] in addition to ground truth normals

from NYUv2. We strictly follow the train/val/test splitting strategy of [153].

5.6.2 Spherical Harmonics Lighting Evaluation

Quantitative comparison to [2]. We compare to [2] as they also propose a

lighting model to jointly predict reflectance, normal and lighting of a natural scene.

Notice that [2] uses RGB-D images, which simplifies the problem.

Lighting for real data is hard to obtain. We instead evaluate the shading from
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the SUNCG synthetic data by fixing the surface normal from ground truth, at which

we can indirectly evaluate the SH lighting. We calculate the per-pixel Mean squared

error (MSE) of the reconstructed shading w.r.t. ground truth shading and show the

results in Table 5.3. Our method shows a significant advantage over [2] and the

real data self-supervision provides a further performance boost. We also evaluate the

shading of [2] on NYUv2 dataset using the AP challenge metric proposed by [153].

They achieve 90.38% shading accuracy, while under the same setup, our method

achieves 95.36%. We believe all these evidences prove the proposed method can

predict much more accurate lighting than [2].

Qualitative comparison to [2]. Figure 5.7, 5.8 and 5.9 compare their visual

results with ours. The red rectangles in reflectance and shading images show that [2]

mistakenly decomposes cast shadow into reflectance instead of shading. We believe

the limited number of SH basis in their method prevents them from modeling the

spatial variation of the lighting well, resulting in a lack of ability to model cast

shadows.

Non-negative lighting: [127] proved that a SH represents non-negative lighting

if its Toeplitz matrix is positive semi-definite. We use their proposed method to

evaluate the effectiveness of our non-negative constraint. We train our coarse scale

network with and without the proposed non-negative constraint, i.e, Equation (5.3),

and then test on the validation set of our synthetic SUNCG data. Without the pro-

posed non-negative constraint, the percentage of global SH that represents negative

lighting is 13.39%. It decreases drastically to 1.09% with this constraint. Figure 5.6

visualizes the predicted lighting with and without the non-negative constraint. After
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Method Avg. (◦)↓ Med. (◦)↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

[158] 27.90 21.29 26.76 52.21 63.75
Ours 28.63 21.05 27.68 52.42 62.87

Table 5.4: Surface normal evaluation on NYUv2. Average (Avg.) and Median
(Med.) show the average and median angular error, smaller values are the better.
11.25◦, 22.5◦ and 30◦ shows the percentage of normals with angular error smaller
than 11.25◦, 22.5◦ and 30◦, higher values are better.

fine-tuning on real data, the global SH that represents negative lighting is reduced

to 0% and there is only one image that contains negative local lighting.

A

B

Figure 5.7: Comparison with [2]. First row of A and B from left to right: input
image, reflectance by [2], shading by [2], normal by [2], lighting by [2]. Second row
of A and B from left to right: ground truth normal; reflectance, shading, normal,
global SH and local SHs by the proposed method.
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B

C

Figure 5.8: Comparison with [2]. First row of A, B, C and D from left to right:
input image, reflectance by [2], shading by [2], normal by [2], lighting by [2]. Second
row of A, B, C and D from left to right: ground truth normal; reflectance, shading,
normal, global SH and local SHs by the proposed method.
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B

C

Figure 5.9: Comparison with [2]. First row of A, B, C and D from left to right:
input image, reflectance by [2], shading by [2], normal by [2], lighting by [2]. Second
row of A, B, C and D from left to right: ground truth normal; reflectance, shading,
normal, global SH and local SHs by the proposed method.
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(a) image (b) reflectance of [154] (c) reflectance of [153] (d) our reflectance (e) our normal

(f) shading of [154] (g) shading of [153] (h) our shading (i) our global SH (j)our local SH

Figure 5.10: Comparison with state-of-the-art intrinsic image decomposition
method. Note that although [153] achieves the best AP score on shading, the gen-
erated shading image is of very low contrast. The red rectangle shows the shading
of [154] suffers seriously from the reflectance bleeding problem.

5.6.3 Intrinsic Image Decomposition

Model trained on synthetic data. We evaluate our network trained using syn-

thetic data on IIW, SAW and NYUv2. For reflectance on IIW, we use the WHDR

metric proposed in [128], which computes the weighted error of the predicted re-

flectance with human annotation. The challenge average precision (AP) proposed

by [153] is used to evaluate the predicted shading. It computes the average preci-

sion of classification for constant shading regions and shadow boundaries. Table 5.5

(a) compares our trained network with [153] on IIW and SAW dataset. It shows

that our proposed method is closely comparable to [153] on IIW and produces much

better results than [153] on SAW when trained on SUNCG dataset.

[153] claimed that the dataset they provided (denoted as CGI) has a smaller

domain gap with real data compared with SUNCG. For a sanity check, we train

our coarse network using CGI and achieve WHDR 37.98, while the WHDR of our
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IIW SAW

Method Dataset WHDR (%)↓ AP (%)↑

a
Li [153] SUNCG 26.1 87.09

Proposed SUNCG 26.8 92.40

b

Grosse [160] - 26.9 85.26
Garces [161] - 24.8 92.39
Zhao [162] - 23.8 89.72

Bi [144] - 17.7 -
Bell [128] - 20.6 92.18
Zhou [145] IIW 19.9 86.34

[146] IIW 19.5 89.94
Fan [154] IIW 15.4 -
Li [153] CGI + real 15.5 96.57

proposed SUNCG + real 15.2 95.01

Table 5.5: Reflectance evaluation on IIW and shading evaluation on SAW. For
WHDR, lower value (↓) is better, for AP, higher value is better(↑).

coarse network trained on SUNCG is 28.20. We do not see the advantage of using

CGI data for training and thus we train our network using SUNCG dataset.

Model fine-tuned on real data. Table 5.5 (b) compares our method with some

start-of-the-art methods on IIW and SAW. Our method achieves the best perfor-

mance on IIW and second best on SAW.

[154] demonstrated that by incorporating the guided filter into the training

of their network, they can achieve a WHDR of 14.5% which is the state-of-the-art

result. By applying a guided filter to our model as suggested by [146], we can achieve

14.6% which is closely comparable to this result. However, the challenge AP for the

shading of [154] on IIW dataset 1 is 85.77%. Under the same setting, we achieve

96.81%, a more than 10% improvement.

Besides reflectance and shading, Table 5.4 shows that the normal predicted by

1Images are provided by the authors.
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our model achieves strongly competitive results with [158], when trained on SUNCG

synthetic data and evaluated on NYUv2. We further fine-tuned the models with

limited real data (381 images with surface normal ground truth), and achieved 25◦

average angular error, close to [158] 21.74◦.

Visual comparison. We visualize the shading predicted by [154] in Figure 5.10

(f). It shows that the shading images of [154] still retain the effect of reflectance

in their shading prediction. Although [153] achieves the best performance on SAW,

Figure 5.10 (g) shows that their predicted shading images are of low contrast. That

is, the quality of the shading image is low. Across the compared methods, our

method achieves relatively better visual quality on both reflectance and shading.

Figure 5.11, 5.12 and 5.13 show more visual results of [154], [153] and the proposed

method.

To conclude, our GLoSH achieves consistently better results compared to state-

of-the-art methods evaluated on models trained on both synthetic data and fine-

tuned on real data, across the tasks of estimating reflectance, normal, shading and

lighting. We believe this also indicates the effectiveness of the proposed coarse-to-

fine network structure.

5.6.4 Ablation Study

Without synthetic data. Synthetic data is very important for the proposed

method. Table 5.6 “w/o SUNCG” shows the WHDR on IIW, average precision

(AP) on SAW and mean error on the NYUv2 data set when training our network
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A

B

C

Figure 5.11: comparison with state-of-the-art intrinsic image decomposition meth-
ods. First row of A, B and C from left to right: input image, reflectance by [154],
shading by [154], reflectance by [153], shading by [153]. The second row of A, B and
C from left to right: reflectance, shading, normal, global SH and local SHs of the
proposed method.

only using real data. It is clear that without synthetic data, the performance of

our network on reflectance, shading and normal shows significant gap relative to

the “full” model. This is because training a network that performs reasonably well
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A

B

C

Figure 5.12: comparison with state-of-the-art intrinsic image decomposition meth-
ods. First row of A, B, C and D from left to right: input image, reflectance by [154],
shading by [154], reflectance by [153], shading by [153]. The second row of A, B, C
and D from left to right: reflectance, shading, normal, global SH and local SHs of
the proposed method.

requires a huge amount of data. The sparsity of the annotation for reflectance and

shading, and the small amount of real images makes the training intractable.

Without pseudo supervision. Table 5.6 “w/o Lssr ” shows that on IIW and

124



A

B

C

Figure 5.13: Comparison with state-of-the-art intrinsic image decomposition meth-
ods. First row of A, B, C and D from left to right: input image, reflectance by [154],
shading by [154], reflectance by [153], shading by [153]. The second row of A, B, C
and D from left to right: reflectance, shading, normal, global SH and local SHs of
the proposed method.

NYUv2, performance degrades relative to the the “full” model, except for the AP

on the SAW dataset. This shows that the self-supervision helps to provide rough

guidance for the real unlabeled data on reflectance and normal. The degradation
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IIW SAW NYUv2

Method WHDR (%) ↓ AP (%) ↑ Mean Error (◦) ↓

w/o SUNCG 17.82 88.52 35.14
w/o Lssr 15.50 95.79 25.93
w/o LR2 15.34 91.89 25.96

scale1 18.70 90.35 26.68
scale1+scale2 16.62 94.98 25.59

full 15.20 95.01 25.44

Table 5.6: Ablation study on loss, without synthetic SUNCG data, and the coarse-
to-fine scales, evaluated on IIW reflectance, SAW shading and NYUv2 surface nor-
mal.

for shading is probably due to the large domain gap bwteen the lighting of synthetic

data and real data. However, when compared with shading of [153] in Figure 5.10,

we see even with weak supervision, our model can still predict more reasonable

shading.

Contribution of multiple scales. We clearly see in Table 5.6 that “scale1+scale2”

outperforms “scale1”, and our “full” model further outperforms “scale1+scale2”. It

suggests that further adding a finer scale module indeed helps the local lighting mod-

eling and boosts the overall performance. Worth noting that there is gradually satu-

ration by further adding finer modules as the improvement gap from “scale1+scale2”

to “full” is smaller than “scale1” to “scale1+scale2”. In practice, we define our full

model to have three scales, a coarse net with two cascaded finer nets, which strikes

a good balance between accuracy and model complexity.

Without symmetric loss. The WHDR hinge loss proposed by [146] (Equation 5.8)

is not symmetric. This leads to unequal loss when the same points are used in a

different order. By adapting the WHDR to our proposed symmetric one (Equa-
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tion 5.9), we observe improvement on IIW by 0.14%.

Model complexity: We calculate the model parameters of CGI [153] and our

full model. There are 68, 572, 482 floating numbers in CGI and only 14, 665, 594 in

our model, which is much smaller than CGI. Among the state-of-the-art CNN based

methods, our method achieves consistently better performance with a smaller model

size.

127



5.7 Summary

In this chapter, we propose to estimate reflectance, normal and lighting from

a single image, which is a very hard problem that has not been well addressed. A

global and local SHs model is proposed to model the lighting of a natural scene,

which accounts for both holistic lighting and the spatial variation of the lighting. A

novel non-negative constraint is proposed to force the SH lighting to be physically

meaningful. A synthetic data set is applied as augmentation for real data. Extensive

experiments on SAW, IIW, and NYUv2 datasets demonstrate the effectiveness of

our proposed method.
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Chapter 6: Conclusion

Lighting is the medium through which we capture images of the physical world.

Understanding lighting from images can help the computer better understand the

world. Conventional computer vision algorithms usually try to understand light-

ing from images through optimizing complicated objective functions with priors

designed by an expert. They are usually slow and the performance relies on the

quality of priors. Recently, deep CNNs have been applied to many computer vision

problems and achieve great success. In this dissertation, we try to apply deep CNNs

for the task of understanding lighting from images.

The biggest challenge to understanding lighting from images is the lack of

labeled data. Deep CNNs are notorious for their data hungry nature. Millions

of labeled data are needed in order to train a CNN that works reasonably well.

However, labeling lighting from images is impossible.

In this dissertation, we study how to apply synthetic data to train a CNN for

understanding lighting from images.

1. We first empirically study the capacity of CNNs by compressing them. Our

sparsity-induced method can reduce a huge amount of parameters for several

popular CNNs (e.g. more than 76% of parameters in AlexNet when training
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on ImageNet), which shows the current CNNs contain a lot of redundancy.

2. We then designed a label denoising network to make use of synthetic data to

help estimate lighting from real face images. This is a task for which it is ex-

tremely difficult to collect real labels. We demonstrate our proposed method

significantly outperforms the current state-of-the-art lighting estimation meth-

ods.

3. A deep CNN based portrait relighting method is then proposed. Lacking of

an existing dataset, we generate a large scale, high resolution, “in the wild”

dataset for this task. Our model trained on the proposed dataset outperforms

existing methods significantly.

4. At last, we proposed a novel intrinsic image decomposition algorithm for a

natural scene. We are the first to decompose an RGB image of a natural scene

into reflectance, normal and lighting. A novel global and local lighting model

is proposed to model the complicated lighting conditions of a natural scene.

Future direction. Understanding lighting from images is an interesting but

hard problem. Though our proposed methods achieve great progress, there

are still many open questions in this filed. We list a few possible research

directions below:

Powerful and compact lighting model. One direction is how to find a better

lighting model. The Spherical Harmonics (SH) model [34,35] used in our work

assumes lighting is distant and objects are convex, moreover, it cannot model
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cast shadows and high frequency lighting components. Modeling lighting using

environment maps requires a huge number of parameters. As a result, finding

a powerful and compact lighting representation is necessary.

Realistic synthetic data with ground truth lighting Due to the difficulty of

labeling ground truth lighting for real images, synthetic data is used to train

deep CNNs in our work. However, the synthetic data either have a large

domain gap with real data (e.g. the synthetic data we used in [13]) or the

lighting is not accurate [99]. How to generate more realistic synthetic data

with accurate lighting is an interesting direction to explore.
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Appendix A: Evaluating Local Features for Day-Night Matching

In this chapter, we introduce our work of evaluating the performance of local

features in the presence of large illumination changes that occur between day and

night. Through our evaluation, we find that repeatability of detected features, as a

de facto standard measure, is not sufficient in evaluating the performance of feature

detectors; we must also consider the distinctiveness of the features. Moreover, we

find that feature detectors are severely affected by illumination changes between day

and night and that there is great potential to improve both feature detectors and

descriptors.

This work [163] is in collaboration with Torsten Sattler and David W. Jacobs.

A.1 Introduction

Feature detection and matching is one of the central problems in computer

vision and a key step in many applications such as Structure-from-Motion [164], 3D

reconstruction [165], place recognition [166], image-based localization [167], Aug-

mented Reality and robotics [168], and image retrieval [169]. Many of these appli-

cations require robustness under changes in viewpoint. Consequently, research on

feature detectors [170–175] and descriptors [176–179] has for a long time focused
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on improving their stability under viewpoint changes. Only recently has robustness

against seasonal [180] and illumination changes [174,181] come into focus. Especially

the latter is important for large-scale localization and place recognition applications,

e.g., for autonomous vehicles. In these scenarios, the underlying visual representa-

tion is often obtained by taking photos during daytime and it is infeasible to capture

large-scale scenes also during nighttime.

Many popular feature detectors such as Difference of Gaussians (DoG) [176],

Harris-affine [182], and Maximally Stable Extremal Regions (MSER), as well as

the popular SIFT descriptor [176] are invariant against (locally) uniform changes

in illumination. However, the illumination changes that can be observed between

day and night are often highly non-uniform, especially in urban environments (cf.

Fig. A.1). Recent work has shown that this causes problems for standard feature

detectors: Verdie et al. [174] demonstrated that a detector specifically trained to

handle temporal changes significantly outperforms traditional detectors in challeng-

ing conditions such as day-night illumination variations. Torii et al. [166] observed

that foregoing the feature detection stage and densely extracting descriptors instead

results in a better matching quality when comparing daytime and nighttime images.

Naturally, these results lead to a set of interesting questions: (i) to what extent is

the feature detection stage affected by the illumination changes between day and

night? (ii) the number of repeatable features provides an upper bound on how many

correspondences can be found via descriptor matching. How tight is this bound, i.e.,

is finding repeatable feature detections the main challenge of day-night matching?

(iii) how much potential is there to improve the matching performance of local de-
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tectors and descriptors, i.e., is it worthwhile to invest more time in the day-night

matching problem?

In this work, we aim at answering these questions through extensive quan-

titative experiments, with the goal of stimulating further research on the topic of

day-night feature matching. We are interested in analyzing the impact of day-night

changes on feature detection and matching performance. Thus, we eliminate the

impact of viewpoint changes by collecting a large dataset of daytime and nighttime

images from publicly available webcams [183] 1. Through our experiments on this

large dataset, we find that: (i) the repeatability of feature detectors for day-night

image pairs is much smaller than that for day-day and night-night image pairs,

meaning that detectors are severely affected by illumination changes between day

and night; (ii) for day-night image pairs, high repeatability of feature detectors does

not necessarily lead to a high matching performance. For example, the TILDE [174]

detector specifically learned for handling illumination changes has a very high re-

peatability, but the precision and recall of matching local features are very low. A

low recall shows that the number of repeatable points provides a loose bound for the

number of correspondences that could be found via descriptor matching. As a re-

sult, further research is necessary for improving both detectors and descriptors; (iii)

through dense local feature matching, we find that there are a lot more correspon-

dences that could be found using local descriptors than are produced by current

detectors, i.e., there is great potential to improve detectors for day-night feature

matching.

1Please find the data set at http://www.umiacs.umd.edu/~hzhou/dnim.html
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A.2 Dataset

Illumination and viewpoint changes are two main factors that would affect

the performance of feature detectors and descriptors. Ideally, both detectors and

descriptors should be robust to both type of changes. However, obtaining a large

dataset with both types of changes with ground truth transformations is difficult. In

this work, we thus focus on pure illumination changes and collect data that does not

contain any viewpoint changes. Our results show that already this simpler version

of the day-night matching problem is very hard.

The AMOS dataset [183], which contains a huge number of images taken (usu-

ally) every half an hour by outdoor webcams with fixed positions and orientations,

satisfies our requirements perfectly. [174] has collected 6 sequences of images taken at

different times of the day for training illumination robust detectors from the AMOS

dataset. However, the dataset has no time stamps and some of the sequences have

no nighttime images. As a consequence, we collect our own dataset from AMOS. 17

image sequences with relatively high resolution containing 1722 images are selected.

Since the time stamps of the images provided by AMOS are usually not correct,

we choose image sequences with time stamp watermarks. The time of the images

will be decided by the watermarks which are removed afterwards. For each image

sequence, images taken in one or two days are collected. Fig. A.1 gives an example

of images we collected.
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Figure A.1: Images taken from 00:00 - 23:00 in one image sequence of our dataset.

A.3 Evaluation

A.3.1 Keypoint Detectors

For evaluation, we focus on the keypoint detectors most commonly used in

practice. We choose DoG [176], Hessian, HessianLaplace, MultiscaleHessian, Har-

risLaplace and MultiscaleHarris [182] implemented by vlfeat [184] for evaluation.

Their default parameters are used to determine how well these commonly used set-

tings perform under strong illumination changes. DoG detects feature points as the

extrema of the difference of Gaussian functions. By considering the extrema of the

difference of two images, DoG detections are invariant against additive or multiplica-

tive (affine) changes in illumination. Hessian, HessianLaplace and MultiscaleHessian

are based on the Hessian matrix

 Lxx(σ) Lxy(σ)

Lyx(σ) Lyy(σ)

, where L represents the image

smoothed by a Gaussian with standard deviation σ and Lxx, Lxy, and Lyy are the

second-order derivatives of L. Hessian detects feature points as the local maxima
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of the determinant of the Hessian matrix. HessianLaplace chooses a scale for the

Hessian detector that maximizes the normalized Laplacian |σ2(Lxx(σ) + Lyy(σ))|.

MultiscaleHessian instead applies the Hessian detector on multiple scales of images

and detects feature points at each scale independently. HarrisLaplace and Multi-

scaleHarris extended the Harris corner detector to multiple scales in a similar way to

HessianLaplace and MultiscaleHessian. The Harris corner detector is based on the

determinant and trace of the second moment matrix of gradient distribution. All

these gradient based methods are essentially invariant to additive and multiplicative

illumination changes.

We also included the learning based detector TILDE [174], since it is designed

to be robust to illumination changes. We use the model trained on the St. Louis

sequence as it has the highest repeatability when testing on the other image se-

quences [174]. TILDE detects feature points at a fixed scale. In this work, we

define a multiple scale version by detecting features at multiple scales, denoted as

MultiscaleTILDE. Feature points are detected from the original image and images

smoothed by a Gaussian with standard deviation of 2 and 4. When TILDE detects

feature points from the original image, the scale of it is set to be 10. Accordingly,

the scale of detected feature points from those three images are set to be 10, 20 and

40. As suggested by [174], we keep a fixed number of feature points based on the

resolution of the image. For the proposed MultiscaleTILDE, the same number of

feature points as that of TILDE are selected for the first scale. For other scales, the

number of feature points selected are reduced by half compared with the previous

scale. In modified versions, we include 4 times as many points as suggested, naming
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Figure A.2: The number of feature points detected at different time

these TILDE4 and MultiscaleTILDE4 respectively.

A.3.2 Repeatability of Detectors

In this section we address the question: to what extent are feature detec-

tions affected by illumination changes between day and night? by evalu-

ating how many feature points are detected, and how repeatable they are. First we

show the number of detected feature points at different times of the day for different

detectors in Fig. A.2. The numbers are averaged from all 17 image sequences in our

dataset. The number of feature points for TILDE is the same across different times,

since a fixed number of feature points are extracted. For the other detectors, fewer

feature points are detected at nighttime. Especially, the number of feature points

detected by HessianLaplace and MultiscaleHessian are affected most by illumination

changes between day and night.

We then use the repeatability of the detected feature points to evaluate the

performance of detectors. According to [170], the measurement of repeatability

is related to the detected region of feature points. Suppose σa and σb are the
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scale of two points A and B, (xa, ya) and (xb, yb) are their locations, the detected

regions µa and µb are defined as the region of (x − xa)2 + (y − ya)2 = (3σa)
2 and

(x−xb)2 +(y−yb)2 = (3σb)
2 respectively, where 3σ is the size of one spatial bin from

which the SIFT feature is extracted. Then A and B are considered to correspond to

each other if 1− µa∩µb
µa∪µb

≤ 0.5, i.e. the intersection of these two regions are larger than

or equal to half of the union of these two regions. This overlap error is the same as

the one proposed in [170] except that we do not normalize the region size. This is

because if the detected regions do not overlap, we cannot extract matchable feature

descriptors; normalizing the size of the region would obscure this. For example, two

regions with small scales may be judged to correspond after normalization. However,

the detected region from which the feature descriptor is extracted may not overlap

at all, making it impossible to extract feature descriptors to match them.

Some of the images in our dataset may contain moving objects. To avoid the ef-

fect of those objects, we define “ground truth” points and compute the repeatability

of detectors at different times w.r.t. them. To make the experiments comprehensive,

we use daytime ground truth and nighttime ground truth. Images taken at 10:00 to

14:00 are used to get the daytime ground truth feature points (and 00:00 to 02:00

together with 21:00 to 23:00 for nighttime ground truth feature points). We select

the image that has the largest number of detected feature points and match them

to those in other images in that time period. A feature point is chosen as a ground

truth if it appears in more than half of all the images of that time period. Fig. A.3

(a) and (b) shows the number of daytime and nighttime ground truth feature points

detected for different detectors respectively. We notice that though Fig. A.2 shows
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Figure A.3: (a) and (b) show average number of daytime and nighttime ground
truth feature points for each detector respectively. We show repeatability of different
detectors at different times of the day w.r.t. (c) daytime and (d) nightime ground
truth feature points. Please note time periods that are used to compute the ground
truth feature points are excluded for fair comparison.

the number of detected feature points for TILDE4 at daytime is the second small-

est among all the detectors, the number of daytime ground truth feature points of

TILDE4 is larger than 6 detectors. This implies that the feature points detected by

TILDE4 for daytime images are quite stable across different images.

We use these ground truth feature points to compute the repeatability of the

chosen detectors over different times of the day. Thus, repeatability is determined

by measuring how often the ground truth points are re-detected. Fig. A.3 (c) and

(d) show that the repeatability of features for nighttime images w.r.t. nighttime
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ground truth is very high for all the detectors; this is because the illumination of

nighttime images are usually quite stable without the effect of sunlight (cf. Fig. A.1).

For comparison, the repeatability of daytime images w.r.t. daytime ground truth

is smaller and the performance of different detectors varies a lot. Moreover, both

Fig. A.3 (c) and (d) show that the repeatability of day-night image pairs is very low

for most detectors, which implies that detectors are heavily affected by day-night

illumination changes. The drop-off between 05:00-07:00 and 17:00-18:00 is caused

by illumination changes between dusk and dawn. The peaks of the repeatability,

as 09:00 in Fig. A.3 (c) and 03:00 and 20:00 in Fig. A.3 (d), appear because they

are close to the time from which the ground truth feature points are computed.

Among all the detectors, both single scale and multiple scale TILDE have high

repeatabilities of around 50% for day-night image pairs. This is not surprising

since the TILDE detector was constructed to be robust to illumination changes by

learning the impact of these changes from data. Based on the fact that nearly every

second TILDE keypoint is repeatable, we would expect that TILDE is well-suited

for feature matching between day and night.

A.3.3 Matching Day-Night Image Pairs

In theory, every repeatable keypoint should be matchable with a descriptor

since its corresponding regions in the two images have a high overlap. In practice,

the number of repeatable keypoints is only an upper bound since the descriptors ex-

tracted from the regions might not match. For example, local illumination changes
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might lead to very different descriptors. In this section, we thus study the perfor-

mance of detector+descriptor on matching day-night image pairs. We try to answer

the question whether finding repeatable feature detections is the main chal-

lenge of day-night feature matching, i.e., whether finding repeatable keypoints

is the main bottleneck or whether additional problems are created by the descriptor

matching stage. We use both precision and recall of feature descriptor matching

to answer this question. Suppose for a day-night image pair, N true matches are

provided by detectors. Nf matched feature points are found by matching descrip-

tors, among which Nc matches are true matches. Then the precision and recall of

detector+descriptor are defined as Nc/Nf and Nc/N , respectively. Precision is a

usual way to evaluate the accuracy of matching by detector+descriptor. Recall,

on the other hand, tells us what is the main challenge to increase the number of

matches. A low recall means improving feature descriptors is the key to getting

more matches. On the contrary, feature detection is the bottleneck for getting more

matches if a high recall is observed, but still an insufficient number of matching

features are found.

For each image sequence, images taken at 00:00 - 05:00 and 19:00 - 23:00

are used as nighttime images and those taken at 09:00 - 16:00 are daytime images.

One image is randomly selected from each hour in these time periods and every

nighttime image is paired with every daytime image to create the day-night image

pairs. As the SIFT descriptor is still the first choice in many computer vision

problems, and its extension, RootSIFT [185] performs better than SIFT, we use

RootSIFT as the feature descriptor. To match descriptors, we use nearest neighbor
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Figure A.4: (a) shows the precision of RootSIFT matching of day-night image pairs
for different detectors at different nighttime. (b) shows their corresponding number
of correct matched feature points.

search and apply Lowe’s ratio test [176] to remove unstable matches. The default

ratio provided by vlfeat [184] is used in our evaluation. In practice, the ratio test is

used to reject wrong correspondences but also rejects correct matches. The run-time

of subsequent geometric estimation stages typically depends on the percentage of

wrong matches. Sacrificing recall for precision is thus often preferred since there is

enough redundancy in the matches.

The precisions of matching day-night images for all the detectors at different

daytimes are shown in Fig. A.4 (a). We found that though different versions of

TILDE have the highest repeatability among all the detectors, in general, they have

the lowest precision. There are more than 20% drop in precision w.r.t. DoG in most

cases. This shows that a higher repeatability of a detector does not necessarily mean

better performance for finding correspondences, and detectors and descriptors are

highly correlated with each other for matching feature points. As shown in Fig. A.4

(b), the number of correct matches detected by RootSIFT for all the detectors are

quite small. Even for detectors like DoG, which has the highest precision, only
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20 - 40 correct matches can be found. As a result, for applications that need a

large number of matches between day-night image pairs, the performance of these

detector+descriptor may not be satisfactory.

Another interesting finding from Fig. A.4 is that the multiple scale version

of TILDE, MultiscaleTILDE4, does not have a higher precision compared with

TILDE4. One possible reason may be that the scales of features detected by Mul-

tiscaleTILDE4 are set to 10, 20 and 40, which are too large. Fig. A.5 (a) shows

that most of the correctly matched features of DoG+RootSIFT have scales within

10. This is because within a smaller region, the illumination changes between day

and night images are more likely to be uniform, to which the RootSIFT feature is

designed to be robust. To better understand the effect of scales, we set the scale of

TILDE4 to be 1 and scales of MultiscaleTILDE4 to be 1, 2 and 4, and denote these

two modified versions as ModifiedTILDE4 and ModifiedMultiscaleTILDE4. Fig. A.5

(b) compares the precision of them with TILDE4 and MultiscaleTILDE4. We find

that by setting the scale to be small, there is around 5%−10% increase in precision.

Intuitively, with larger scales, features may contain more information, which should

be beneficial for matching. However, descriptors will need to be trained to make

good use of those information, especially when robustness under viewpoint changes

is required.

To examine the main challenge of finding more correspondences, the recall

of these detectors for matching day-night image pairs is shown in Fig. A.6 (a).

We find that the recall of each detector is very low. As a consequence, one way

to improve the performance of day-night image matching is to improve
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Figure A.5: (a) shows the histogram of scales for correctly matched RootSIFT
features using DoG as detector. (b) compares the precision of TILDE4 and Multi-
scaleTILDE4 with small and large scales.
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Figure A.6: (a) shows the recall of RootSIFT matching of day-night image pairs
for different detectors at different nighttimes. (b) shows the recall of RootSIFT
matching of day-day image pairs for different detectors at different daytimes.

the robustness of descriptors to severe illumination changes. As shown in

Fig. A.6, a much higher recall can be noticed for day-day image pairs, meaning that

RootSIFT is robust to small illumination changes at daytime. However, it is not

so robust to severe illumination changes between day and night. The low recall of

day-night image pairs implies that there are a lot of “hard” patches from which

RootSIFT cannot extract good descriptors.

With the development of deep learning, novel feature descriptors based on
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Figure A.7: (a) shows the precision of matching of day-night image pairs for different
detectors at different nighttime using cnn feature. (b) shows the recall of matching of
day-night image pairs for different detectors at different nighttime using cnn feature.

convolutional neural networks have been proposed. Many of them [8, 186, 187] out-

perform SIFT. We choose the feature descriptor proposed in [186] as an example to

evaluate the performance of the learned descriptor+detector. [186] is chosen since

their evaluation method is Euclidean distance, which can be used easily in our eval-

uation framework. Fig. A.7 shows that this CNN feature performs even worse than

RootSIFT+detectors. One reason is that [186] is learned from the data provided

by [177], which mainly focus on viewpoint changes, and illumination changes that

are small. Though [186] shows its robustness to small illumination changes as in

DaLI dataset [188], it is not very robust to illumination changes between day and

night in our dataset.2
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Figure A.8: (a) shows the precision of matching dense RootSIFT for day-night
image pairs at different nighttimes. (b) shows the number of correct matches of
dense RootSIFT for day-night image pairs. (c) shows the number of connected
components of matched points at different nighttime. (d) shows the number of
connected components that contain no matched points of DoG+RootSIFT.

A.4 Potential of Improving Detectors

In this section, we try to examine the potential of improving feature

detectors by fixing the descriptor to be RootSIFT.

Inspired by [166], we extract dense RootSIFT features from day-night image

pairs for matching. When doing the ratio test, we select the neighbor that lies

outside the region from which nearest neighbor’s RootSIFT feature is extracted to

avoid comparing similar features. Figure A.8 (a) and (b) show the precision of

dense RootSIFT matching and the number of matched feature points. Though the

precision is not improved compared with the best performing detector+RootSIFT,

the number of matched feature points improves a lot. This means that there are a

lot of “easy” RootSIFT features that could be matched for day-night image pairs.

However, we find that the matched RootSIFT features tend to cluster. Since detec-

tors would usually perform non-maximum suppression to get stable detections, in

2We also tried to tune the descriptor using day-night patch pairs, but were not able to increase
the descriptor’s performance.
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(a) (b)

Figure A.9: (a) correct matches of DoG+RootSIFT. (b) correct matches of dense
RootSIFT.

the worst case, only one feature could be detected from each cluster. As a result,

the number of these matched features is an upper bound that cannot be reached.

Instead, we try to get a lower bound on the number of additional potential matches

that could be found. To achieve that, we count the number of connected components

for those matched RootSIFT features and show the result in Fig. A.8 (c). Taking

DoG as an example, we show the number of connected components that contain

no correct matches found by detector+RootSIFT in Fig. A.8 (d). We found that

matches found by detector+RootSIFT have almost no overlap with the connected

components of the matched dense RootSIFT, meaning that there is great potential

to improve feature detectors. Moreover, we notice that there are generally 10 - 20

connected components found by dense RootSIFT. This is in the order of correct

matches we could get for day-night image matching shown in Fig. A.4.

Fig. A.9 shows an example of correct matches found by DoG+RootSIFT and

dense RootSIFT. For this day-night image pair, DoG+RootSIFT can only find 4

correct matches whereas dense RootSIFT can find 188 correct matches. Fig. A.10

shows the detected feature points using DoG for the day and night images and

their corresponding heat map of cosine distance of dense RootSIFT. The colored
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(a) (b) (c)

Figure A.10: (a) and (b) shows an example of nighttime and daytime image with
detected feature points using DoG. (c) shows the heat map of the cosine distance of
dense RootSIFT for (a) and (b).

rectangles in Fig. A.9 (b) and those in Fig. A.10 (a), (b) (c) are the same area.

It is clearly shown that the cosine distances of points in that area between day

and night images are very large, and Fig. A.9 (b) shows that they can be matched

using dense RootSIFT. However, though many feature points can be detected in the

daytime image, no feature points are detected by DoG for the nighttime image3. As

a result, matches that could be found by RootSIFT are missed due to the detector.

In conclusion, a detector which is more robust to severe illumination changes can

help improve the performance of matching day-night image pairs.

A.5 Summary

In this work, we evaluated the performance of local features for day-night

image matching. Extensive experiments show that repeatability alone is not enough

for evaluating feature detectors. Instead, descriptors should also be considered.

Through the discussion about precision and recall of matching day-night images

and examining the performance of dense feature matching, we concluded that there

3The area in the rectangle of the night image actually has a lot of structure, it appears to be
totally dark due to low resolution
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is great potential for improving both feature detectors and descriptors. Thus, further

evaluation with parameter tuning and advanced descriptors [189] as well as principal

research on the day-night matching problem is needed.
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