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A. Implementation Details

A.1. Training, Validation and Testing Dataset

For searching the best query architecture, we carve out a
small validation split from the original training set. For the
face tasks, we set aside 5% from the training set of IMDB
[5] while for the fashion tasks, we set aside 10% from the
training set of DeepFashion2 [1]. The remaining portions
of the training sets are actually used to train all our em-
bedding models (query supernet, gallery model, final query
models). After a super-network is trained, we evaluate the
performance of each candidate architecture (we refer to it
as a sub-network) on the held out validation split. The final
results presented in this paper are reported on the original
validation portions of IMDB and DeepFashion2.

A.2. Designing and Training the Super-network

For each computational tier (330, 230, 100 Mflops), we
train a different super-network. For the 300 Mflops tier, our
super-network is the same as that in [2]. For the 230 and 100
Mflops tiers, we reduce the channel widths by 0.75× and
0.5× in each layer. The super-network is trained through a
sampling process: In each batch, a new architecture (we call
this a sub-network) is sampled and only the weights corre-
sponding to it are updated. For sampling a sub-network,
we use the parameter free uniform sampling method. This
means that, for each layer, the chosen block (includes four
choices from 0-3) and channels width (includes ten choices
from 0-9) are sampled uniformly. We notice that the super-
network fails to converge if the sampling process is started
from the first epoch. To solve this, we use a warm-up phase
of 10 epochs wherein the the super-network is trained with-
out sampling. During the warm-up phase, the output of all
four blocks in each layer are combined through averaging
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and the largest channel width is used.

A.3. Details of the evolutionary search

We reuse the same hyper-parameters from [2] for the
evolutionary search step. Specifically, we search for 20
generations, each with a population size of 50, crossover
size of 40, mutate chance of 0.1 and random select chance
of 0.1. To guide the evolutionary search for finding the
most compatible architectures, we use reward R3 from
Tab.1 in the main paper. For the face tasks, we com-
pute this reward on the IMDB “validation” split using
the 1:1 verification metric of TAR@FAR=10−3. For
the fashion tasks, we compute this reward on the Deep-
Fashion2 validation split using the top-50 metric. Note
that our rewards metrics (TAR@FAR=10−3 for face, top-
50 for fashion) are different from the target metrics
(TAR@FAR=10−4/TNIR@FPIR=10−1 for face, top-10 for
fashion). This is mainly because the validation split is
smaller (than the test split), and thus target metric (e.g. top-
10 accuracy) is noisy compared to the validation metric (e.g.
top-50 accuracy).

B. Additional Results under Different Evalua-
tion Metrics

Due to space limits, in the main paper, we present one
evaluation metric per task. In this section, we present the
full metric results according to IJB-series and DeepFash-
ion2 benchmark standard for reference. More specifically,
in Sec. B.1 we show top-k search accuracy on face retrieval
task. In Sec B.2, we evaluate our CMP-NAS on face veri-
fication task at additional operating points; In Sec B.3, we
show the results of the proposed method using top-1, top-
10 and top-20 retrieval accuracy on fashion retrieval task.
All these additional results further demonstrate that (1) With
CMP-NAS, the compatibility rule holds; (2) The architec-
tures searched with CMP-NAS outperform other baselines
for both homogeneous and heterogeneous search accuracy.



Query Model MFlops Homogeneous Acc. Heterogeneous Acc
Top-k with k= Top-k with k=

1 5 10 1 5 10

ResNet-101 7597 91.1 95.0 96.1 - - -
MobileNetV1 579 80.0 88.9 91.5 83.5 91.4 93.7
MobileNetV2 329 85.8 92.2 94.2 88.1 93.8 95.2
ProxylessNAS 332 86.3 92.5 94.4 88.5 93.9 95.4
CMP-NAS-a(Face) 327 89.7 94.2 95.5 90.7 94.7 96.1
MobileNetV3 226 85.6 92.1 94.0 88.0 93.5 95.2
CMP-NAS-b(Face) 216 88.2 93.5 95.2 89.8 94.5 95.9
MobileNetV1(0.5x) 155 74.1 77.5 85.3 77.5 88.3 91.3
ShuffleNetV2 149 81.6 89.8 92.2 85.0 92.0 94.1
ShuffleNetV1(g=1) 148 81.3 89.7 92.1 85.1 92.1 94.0
MobileNetV2(0.5x) 100 80.0 88.5 91.3 83.6 90.9 93.3
CMP-NAS-c(Face) 94 84.3 91.4 93.4 86.9 93.1 94.9

Table 1: Extending Tab. 5 of the main paper. Evaluating CMP-
NAS on the IJB-C 1:N face retrieval benchmark using two ad-
ditional metrics: top-1, top-5 top-10 accuracy. Observe that the
models discovered with CMP-NAS comprehensively outperform
the baselines on both, homogeneous and heterogeneous accuracy.

Query Model MFlops Homogeneous Acc. Heterogeneous Acc.
TAR@FAR= TAR@FAR=

10−2 10−3 10−4 10−2 10−3 10−4

Resnet-101(gallery) 7597 96.9 92.8 85.4 - - -
MobileNetV1(1x) 579 93.2 82.6 66.7 95.0 86.6 73.0
MobileNetV2(1x) 329 95.6 88.1 75.4 96.5 91.0 80.8
ProxyLess(mobile) 332 95.7 88.2 75.5 96.5 90.7 80.3
CMP-NAS-a(Face) 327 96.7 91.5 81.6 97.1 92.7 84.5
MobileNetV3 226 95.5 88.0 74.3 96.5 90.9 79.9
CMP-NAS-b(Face) 216 96.3 90.2 79.0 96.9 92.2 82.8
MobileNetV1(0.5x) 155 90.8 76.9 58.0 93.4 82.1 64.3
ShuffleNetV2(1x) 149 93.7 83.8 66.8 95.4 88.7 74.8
MobileNetV2(0.5x) 100 93.3 82.0 64.8 94.9 86.8 72.8
CMP-NAS-c(Face) 94 95.1 86.6 71.5 96.1 90.2 78.3

Table 2: Extending Tab. 6 of the main paper. Evaluating the mod-
els CMP-NAS-a,b,c(Face) on the 1:1 face verification task using
IJB-C using additional operating points. The searched models out-
perform the baselines indicating they can generalize across tasks.

B.1. Additional Results on Face Retrieval

Tab. 1 extends Tab.5 in the main paper by including other
popular metrics (top-1, top-5 and top-10) for the face re-
trieval task. Additionally, we include the homogeneous ac-
curacy achieved by the models.

B.2. Additional Results on Face Verification

Besides face retrieval, face verification is another pop-
ular task in the “open-universal” problem of face recog-
nition. in Tab. 2, we extend Tab. 6 of the main pa-
per by showing the results on additional operating points
(FAR=10−2, 10−3, 10−4).

B.3. Additional Results on Fashion Retrieval

Tab. 3 extends Tab. 5 in our paper by showing the ho-
mogeneous and heterogeneous accuracy through the top-1,

Query Model MFlops Homogeneous Acc. Heterogeneous Acc
Top-k with k as Top-k with k as

1 10 20 1 10 20
ResNet-101 39.4 65.1 72.0 - - -
MobileNetV1 579 34.7 60.5 67.8 36.3 62.3 69.1
MobileNetV2 329 32.4 58.0 65.9 33.9 60.4 67.9
ProxylessNAS 332 35.1 60.8 68.5 36.6 62.1 69.4
CMP-NAS-a(Fashion) 314 39.0 65.4 72.4 39.3 65.6 72.5
MobileNetV3 226 37.1 62.7 69.9 37.5 63.0 70.2
CMP-NAS-b(Fashion) 211 38.2 64.0 71.2 38.4 64.9 72.2
MobileNetV1(0.5x) 155 32.8 57.7 65.6 34.0 60.2 67.5
ShuffleNetV2 149 35.4 60.7 68.1 35.7 62.1 69.7
ShuffleNetV1(g=1) 148 34.4 60.5 68.1 35.3 62.6 69.8
CMP-NAS-c(Fashion) 93 37.6 63.5 71.0 38.4 64.8 72.1

Table 3: Extending Tab. 5 of the main paper. Evaluating CMP-
NAS on the Deepfashion2 fashion retrieval benchmark using ad-
ditional metrics: top-1 and top-20 accuracy. We observe that the
models discovered with CMP-NAS comprehensively outperform
the baselines on both, homogeneous and heterogeneous accura-
cies.

Gallery Query Prune Prune Train Fine-tune BCT KD
model method Amt. Scratch

ResNet-101 - 0% 87.9 - - -
ResNet-101 Magnitude [4] 30% 0.0 87.9 88.5 0.0
ResNet-101 Magnitude [4] 50% 0.0 87.3 88.2 0.0
ResNet-101 Magnitude [4] 70% 0.0 87.2 87.9 0.0
ResNet-101 Magnitude [4] 90% 0.0 86.5 87.2 0.0
ResNet-101 Channel [3] 30% 0.0 87.6 88.4 0.0
ResNet-101 Channel [3] 50% 0.0 87.5 87.8 0.0
ResNet-101 Channel [3] 70% 0.0 87.3 87.9 0.0
ResNet-101 Channel [3] 90% 0.0 86.3 87.4 0.0

Table 4: Extending Tab. 4 of the main paper. Comparing train-
ing methods for heterogeneous accuracy achieved on the 1:N face
retrieval task. The query model φq is obtained via pruning fil-
ters from the first two layers of each residual block of the gallery
model. We compare two different pruning methods [3, 4] at sev-
eral pruning amounts. Observe that for all pruning methods and
amounts, training the query model with BCT loss leads to (1) non-
zero heterogeneous accuracy and (2) the highest heterogeneous ac-
curacy.

top-10 and top-20 metrics.

C. Additional results for weight-level compati-
bility

Due to space limit, Tab 4 in the main paper compares dif-
ferent training methods for weight-level compatibility using
query model achieved by pruning 90% of filters. Tab. 4 ex-
tends Tab 4 in the main paper by showing heterogeneous
accuracy of query models achieved by pruning the gallery
model to different levels.
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Figure 1: Extending Fig. 6 of the main paper. The figures are generated by averaging the best five architectures discovered by CMP-NAS
(under 100 Mflops) when using different training strategies (Vanilla, BCT) and rewards (R1 − R3). In (a),(b) we plot the homogeneous
and heterogeneous accuracy for the 1:N face retrieval task using the metric TNIR@FPIR=10−1. In (c),(d) we plot the homogeneous and
heterogeneous accuracy for the fashion retrieval task using the metric top-10. Observe that in all cases, BCT training works best among
the training strategies whileR3 outperforms all other rewards.

D. Comparing different rewards
Fig. 1 is an extension of Fig. 6 in the paper. We present

the homogeneous and heterogeneous accuracy achieved by
the best five query models searched using different rewards
and training schemes on the face and fashion retrieval tasks.
These complementary results further reinforce our conclu-
sions: R3 generally works better thanR1 andR2; Training
the super-network with BCT outperforms vanilla training
by a large margin.
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