Less is More: Towards Compact CNNs
Supplementary Material

Hao Zhou', Jose M. Alvarez? and Fatih Porikli?3

! University of Maryland, College Park
2 Data61/CSIRO
3 Australian National University
hzhou@cs.umd.edu, jose.alvarez@data6l.csiro.au
fatih.porikli@anu.edu.au

1 The way we compute parameter compression and
memory footprint reduction.

We take AlexNet [I] as an example to show how we compute the parameter
compression and memory footprint reduction of a network.

We show the structure of the filters in each convolutional layer and fully
connected layer of AlexNet [I] in Table |1] Each neuron is an order-3 tensor, we
use width, height and input to show the number of elements for each of the
three channels. Output shows the number of neurons in each layer (it is also
the number of output features of each layer). Here, suppose AlexNet is used
to classify images into 1000 categories, as a result, fc8 contains 1000 output
channels. In total the number of parameters is 60,965, 224.

Our purpose is to remove the number of neurons, i.e. the number in “output”
column in Table [I} Please note that the number of input of (¢ + 1)-th layer is
related to the number of output in i-th layer. For example, if we can remove n
neurons for fc6, the corresponding n channels in input of fc7 will also be removed.

In the paper, we show that we can remove 2996 neurons for fc6, then the
number of parameters removed are computed as:

fc6 = 6 x 6 x 256 x 2996 + 2996

= 27,614,132, (1)
fc7=1x1 x 2996 x 4096
= 12,271,616, (2)
total = fc6 + fc7
= 39, 885, 748. (3)

As aresult, the percentage of parameters we removed is 39, 882, 752/60, 965, 224 =
65.42%.

Supposing single type float (4 byte) is used to store the parameters. The
memory footprint reduction is

(total) x 4/1024/1024 = 152.2 (MB) (4)

2 Hao Zhou, Jose M. Alvarez and Fatih Porikli

Table 1. The structure of neurons for each convolutional and fully connected layer in
AlexNet.

layer width height |input output |bias total
convl 11 11 3 96 96 3494 K
conv2 5 5 48 256 256 307.46 K
conv3 3 3 256 384 384 885.12 K
conv4 3 3 192 384 384 663.94 K
convh 3 3 192 256 256 442.62 K
fc6 6 6 256 4096 4096 37.75 M
fe7 1 1 4096 4096 4096 16.78 M
fc8 1 1 4096 1000 1000 4.10 M

2 Algorithm of solving low rank constraints

In the paper, we mention that the backward step in forward backward splitting
for tensor low rank constraints is

n
1
sk . s RTINS
Wiy = argmin ;Zl (W50l ler + 27)\||Wl] wii|

I 1 &k ke (2
= =S W@ ller + 5 D Wy — Wi 1% 5
argmwgln 2 W) ller + 270 2= W35y — Wil (5)

We use Low Rank Tensor Completion (LRTC) [2] to deal with our tensor low
rank constraints. Here, we give the detail of the algorithm. Suppose we have a
2D matrix X, let X = UXV be the singular value decomposition of X, where
X is a diagonal matrix of the singular values of X. Now let us suppose the i-th
singular value is o;, then define X» = diag(max(o; — 7),0). Then the shrinkage
operate is defined as:

Dy(X)=Ux, VT, (6)

Algorithm [1{ shows how to use LRT'C to optimize Equation .

Algorithm 1 Backward step for tensor low rank constraints
1: Initialize Wj; = W/

2: while not converged do

3: fori=1tondo

4 M; = DM(%(VAVZ(U + VAVZ*(Z)))
5 end for

6: v?/fj = % Z?:l M;

7: end while

Less is More: Towards Compact CNNs 3

3 Proof for section 5
We show in the paper that the practical definition of ReLU is as follows:

T ifx>e¢

ReLU(z) = { (7)

0 ifx<e.

Where € is chosen such that for any real number x that a computer can represent,
if £ > 0, then z > ¢; if x <0, then z < e. For any real number = that can be
represented by a computer, the gradient of ReLLU function is:

= (8)

dReLU(xz) |1 ife>e
dx 0 ifz<e

Take a particular neuron w;; as an example and suppose all other neurons are
fixed. Also, suppose x is one of the features that will go through W;; in the {-th
layer. The output for x, assuming the convolution layer is followed by a ReLU
function, is zgz = ReLU(W;;X), where X is x augmented by 1 to account for the
bias term. Next, we show that w;; = 0 is the local minimum of our objective
function along the dimensions of W;;, referred to as local minimum of a CNN
for simplicity.

Given any x € {2, define p(Aw;;) = Aw;X as a function of Awy;. It is
easy to see that ¢(Aw;;) is a continuous function. As a result, we can always
find a 0x such that |p(AWw;;) — p(0)| < €, V||AW;; — 0|| < 0x. According to
Equation (7)), for those W;;, ReLU(AW;;%x) = 0. Denote § as the smallest one
among all dx, we know that for any ||Aw;; — 0|| < ¢, ReLU(Aw;;x) = 0,
Vx € £2. As all other neurons are fixed, we know that for any ||Aw;; — 0|| < 9,
Y(AW,;) = ¢, where 1 is the first part in our objective function and c is a scalar.
Since g(W) contains a sparse constraint on w;;, g(Ww;; = 0) < g(Aw;;) and the
equality holds if and only if Aw;; = 0. As a result, for any ||[Aw;; — 0|| < 4,
Y(Wi = 0)+g(Wy; = 0) < P(AW;) +g(AWy,), ie. Wi = 0 is the local minimum
of the objective function ¥ (Wy;) + g(Wy;).

4 Compare with [y constraints on LeNet

Both [3] and [4] proposed to add Iy constraints to the parameters of a neural
network. They show that it performs quite well in sense of zeroing out parame-
ters. We apply this idea to remove neurons on LeNet and compare it with adding
tensor low rank and group sparse constraints. We use exactly the same setup as
in the paper and test the idea using MNIST data set [5]. Following the idea of [3]
and [4], given a parameter ¢, neurons whose magnitudes are among the largest
top t will be kept, other neurons will be set to zero during the training process.

Figure [1] compares results of [y constraints with proposed tensor low rank
and group sparsity. For the experiment, ¢ is chosen based on the number of
non zero neurons we got by using proposed sparse constraints under different

4 Hao Zhou, Jose M. Alvarez and Fatih Porikli

—#—Tensor lowrank constaints| —#—Tensor lowrank constaints|
. —%— group sparse constriants __ oss|{ = group sparse constriants
E\T/ IQ constraints § ‘D constraints
o o8 @ °8
s s
= = o7
e e
5] T o)
c <
o (=}
2 = o
= k=]
© T o]
> >
- “
a Q05
=] =]
[=
05
o £ 70 El £ 0 EJ %W 3 0 i 0 s
Remaining non zero neurons (%) Remanining non zero neurons (%)
(a) (b)

Fig. 1. (a) and (b) show the top 1 validation error rate versus the percentage of non
zero neurons for second convolutional layer and first fully connected layer for LeNet
respectively. We compare results of low rank constraints, group sparse constrains and
directly using lo constraints.

H

10000

4
2
9]
£
o
5]
Q
s
o]
o
€
E
z

Number of neurons

T3 0005 001 0015 002 0025 005 003 004 0045 005

T oT T om o am s
Value of the norm of each neuron Absolute value of each paramter

(a) (b)

Fig. 2. (a) shows the distribution of norm of the neurons in first fully connected layer
for LeNet. (b) shows the distribution of the absolute value of the parameters in the
first fully connected layer for LeNet. The network is trained with one epoch without
adding sparse constraints.

weights. Generally speaking, the proposed constraints perform better than the
lp constraints for training the network. This is more obvious when we try to get
more zero filters for the first fully connected layer. One reason is that, without
using any sparse constraints, the norm of the neurons learned are distributed
more compactly and far from 0. As a result, directly setting some of the neurons
to be zero is risky. The distribution of absolute values of the parameters, even
without adding any sparse constraints, are more biased to 0, which explains
why [y constraint works well in [3] and [4]. This can be seen form Figure
which shows the distribution of the norm of the neurons and absolute values of
parameters.

Less is More: Towards Compact CNNs

5

Table 2. The structure LeNet in table 3 of submitted paper. 71 is the sparse weight
for conv2, the sparse weight for fc3 is fixed as 100. Please note that for different weight,
we run four times and get the average number of filters for LeNet.

layer before after

T1:60 7'1:80 7'1:100
convl 20 filers 5 x 5 |20 filters 5 x 5|20 filters 5 x 5|20 filters 5 x 5
ReLU
MaxPooling |2 x 2 2x2 2x2 2x2
conv2 50 filters 5 x 5 |27 filters 5 x 5(22 filters 5 x 5|18 filters 5 X 5
ReLU
MaxPooling |2 x 2 2x2 2x2 2x2
fc3 500 filters 4 x 4|11 filters 4 x 4|11 filters 4 x 4|11 filters 4 x 4
ReLU
fcd 10 outputs 10 putputs 10 putputs [10 putputs

Table 3. The structure CIFAR10-quick in table 3 in the paper. 71 is the sparse weight
for conv3, the sparse weight for fc4 is fixed as 280.

5

layer before after

71 = 220 71 = 240 71 = 280
convl 32 filers 5 x 5 |32 filters 5 x 5|32 filters 5 x 5|32 filters 5 x 5
MaxPooling (3 x 3 3 x3 3x3 3x3
ReLU
conv2 32 filters 5 x 5 (32 filters 5 x 5|32 filters 5 x 5‘32 filters 5 x 5
ReLU
MaxPooling (3 x 3 3x3 3x3 3x3
conv3 64 filters 5 x 5 |44 filters 5 x 5|34 filters 5 x 5|29 filters 5 x 5
ReLU
MaxPooling (3 x 3 3x3 3x3 3x3
fc4 64 filters 4 x 4 (19 filters 4 x 4|18 filters 4 x 4[19 filters 4 x 4
ReLU
fch 10 outputs 10p outputs |10 outputs [10 outputs

Some network structures in the paper

In this part, we show the network structure of all the networks before and after
adding sparse constraints in Table [2| Table [3] and Table [4] based on table 3 in
the paper.

6 Compare results with [6]

Besides the proposed method, [6] is another paper that train the compact CNN
from scratch. We want to emphasis that [6], different from the proposed one,
cannot reduce the number of neurons. In fact, the effective number of neurons

may be increased as they show in section 6.2. In the following, we try to compare
with [0].

6 Hao Zhou, Jose M. Alvarez and Fatih Porikli

Table 4. The structure AlexNet in table 3 in the paper.r; is the sparse weight for fc6,
7o is the sparse weight for fc7. Note that due to the complex structure of AlexNet, we
only show the network from fc6 to the ouput layer. All the other layers are the same.

layer before after
T1 :407 T2 =|T1 = 45 T2 =|T1 :45, T2 =
35 30 35
fc6 4,096 filers 6 x|2,111 filers 6x|940 filers 6 x [1,090 filers 6 x
6 x 256 6 x 256 6 x 256 6 x 256
ReLU
fe7 4,096 filters 1 x|1,782 filters|1,630 filters|1,401 filters
1 x 4096 1x1x4096 |1 x1x4096 |1 x 1 x 4096
ReLU
fc8 1,000 outputs |1,000 outputs 1,000 outputs [1,000 outputs

MNIST dataset: The network structure used in [6] is different from ours.
However, we show that our compression rate is even higher than the upper
bound of theoretical compression rate of [6]. [6] show that they can use TT
format to approximate fully connected layers, however, it is not clear whether
it can be easily applied to convolutional layers. LeNet we used in our paper has
two convolutional layers with 25570 parameters, this is the lower bound of the
number of parameters for [6] since it can only deal with fully connected layers.
This is worse than our best result shown third row of LeNet in Table 3, which
has 13838 parameters in total.

CIFAR-10 dataset: We use the same network structure as [6] does. The
compression rate of the NIPS paper is 1.7 with a 1.14% drop in accuracy. Based
on Table 3 in our paper, our compression rate is 2.23 with 0.4% drop in accuracy.

ImageNet: We use different networks from [6]. With a 1% drop in accu-
racy, our best compression rate is 4.3 for AlexNet and 1.5 for VGG-13, best
compression rate for VGG-16 in [6] is 3.9.

Less is More: Towards Compact CNNs 7

References

. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems.
(2012)

. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating miss-
ing values in visual data. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2013)

. Yu, D., Seide, F., Li, G., Deng, L.: Exploiting sparseness in deep neural networks
for large vocabulary speech recognition. In: ICASSP. (2012)

. Collins, M.D., Kohli, P.: Memory bounded deep convolutional networks. CoRR
abs/1412.1442 (2014)

. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE (1998)

. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks.
In: NIPS. (2015)

	Less is More: Towards Compact CNNs

