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In this supplementary material, we first compare our method to [1] on NYUv2 [7] with more visual results in Section 1. As
well, more visual results are compared to [3] and [6] in Section 2 on IIW. Section 3 shows the detail of our network structure.
We provide the rendering equation of Spherical Harmonics lighting in Section 4. Limitations of the proposed method are
discussed in Section 5.

1. More Results on NYUv2 [7]
Figure 1, Figure 2 and Figure 3 show more comparisons of our results to [1], expanding the results from Figure 5 in the

main paper. The red rectangles in reflectance and shading images show that [1] mistakenly decomposes cast shadow into
reflectance instead of shading, while the proposed method successfully avoids this problem.
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Figure 1. Comparison with [1]. First row of A and B from left to right: input image, reflectance by [1], shading by [1], normal by [1],
lighting by [1]. Second row of A and B from left to right: ground truth normal; reflectance, shading, normal, local SH by the proposed
method.
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Figure 2. Comparison with [1]. First row of A, B, C and D from left to right: input image, reflectance by [1], shading by [1], normal by
[1], lighting by [1]. Second row of A, B, C and D from left to right: ground truth normal; reflectance, shading, normal, local SH by the
proposed method.
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Figure 3. Comparison with [1]. First row of A, B, C and D from left to right: input image, reflectance by [1], shading by [1], normal by
[1], lighting by [1]. Second row of A, B, C and D from left to right: ground truth normal; reflectance, shading, normal, local SH by the
proposed method.



2. More Results Compared to [3] and [6]
Figure 4, Figure 5 and Figure 6 show more comparison of our results to [3] and [6], expanding results from Figure 6

of the main submission. First of all, the compared methods only decompose the input images into reflectance and shading,
while our method decompose it further into reflectance, surface normal and lighting. Results from the compared methods
show that the shading images predicted by [3] look like a gray scale version of the input images and that shading images
predicted by [6] are of low contrast. Whereas our method predicts more reasonable shading images. This is mainly because
we provide a physically reasonable decomposition on shading, i.e. decomposing it into surface normal and lighting, where
lighting is further regularized with the non-negative constraint to be more physically realistic. We believe this decomposition
can implicitly constrain the shading better.

A

B

C

Figure 4. Comparison with state-of-the-art intrinsic image decomposition methods. First row of A, B and C from left to right: input image,
reflectance by [3], shading by [3], reflectance by [6], shading by [6]. The second row of A, B and C from left to right: normal, reflectance,
shading, global SH and local SH of the proposed method.
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Figure 5. Comparison with state-of-the-art intrinsic image decomposition methods. First row of A, B, C and D from left to right: input
image, reflectance by [3], shading by [3], reflectance by [6], shading by [6]. The second row of A, B, C and D from left to right: normal,
reflectance, shading, global SH and local SH of the proposed method.
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Figure 6. Comparison with state-of-the-art intrinsic image decomposition methods. First row of A, B, C and D from left to right: input
image, reflectance by [3], shading by [3], reflectance by [6], shading by [6]. The second row of A, B, C and D from left to right: normal,
reflectance, shading, global SH and local SH of the proposed method.



3. Network Structure
As discussed in our paper, we define a three scale coarse-to-fine network structure to naturally incorporate the global and

local SH modeling as well as the multi-scale modeling of reflectance and surface normal. Figure 7 shows the framework of
our method. Overall our framework can be divided into three scales. We employ a hourglass network [8] for the first scale
network and a fully convolutional structure for second and third scale networks. Details are discussed in the following for
the three scale network structures.
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Figure 7. Framework of the proposed method. R means a renderer which takes normal and lighting as input and predicts shading.

Network of First Scale. The first scale network takes a 64× 64 image as input and predicts 64× 64 reflectance Rc, normal
Nc, and a single global Lighting Lc. Shading Sc can be constructed based on Nc and Lc. The branches used to predict
reflectance and normal have the same hourglass network structure [8], which is illustrated in Figure 8 (a). The branch to
predict global SH is shown in Figure 8 (b). The green blocks are shared by all the three branches.
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Figure 8. (a) shows the network structure to predict reflectance and normal and (b) shows the network structure for predicting global SH.
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Figure 9. Network structure to predict reflectance, normal and lighting at second and third scale.

In Figure 8, C1, C2, C3, and C4 represent convolutional layers. D1, D2, I, U1, U2, U3, S1, S2, S3 are residual blocks
defined in [4]. AP is an average pooling layer and FC represents a fully-connected layer. Each of the convolution layers is



followed by batch normalization [5] and ReLU except for the output layer. Table 3 shows the detailed definition of the block
in Figure 8. Since we predict 9 Spherical Harmonics for each channel of the global SH, the number of output channels for
global SH is 27.

Table 1. Details of each block in our network. (a) shows the details about each block in Figure 8 (a) and (b) shows the details about each
block in Figure 8 (b).

C1 C2 C3 C4 D1 D2 I U1 U2 U3 S1 S2 S3 FC

(a)

input channel number 3 64 32 3 64 128 256 248 256 128 64 128 256 -
output channel number 64 32 3 3 128 256 248 256 128 64 64 128 256 -

filter size 5 3 3 3 3 3 3 3 3 3 3 3 3 -
input feature size 64 64 64 64 64 32 16 8 16 32 64 32 16 -

output feature size 64 64 64 64 32 16 8 16 32 64 64 32 16 -

(a)

input channel number 3 16 64 - 64 128 256 - - - - - - 128
output channel number 64 64 128 - 128 256 16 - - - - - - 27

filter size 5 3 3 - 3 3 3 - - - - - - -
input feature size 64 8 4 - 64 32 16 - - - - - - -

output feature size 64 4 2 - 32 16 8 - - - - - - -

Network of Second and Third Scale. Our second and third scale network has the same network structure. Our second
network works on images with resolution 128× 128 and our third network works on images with resolution 256× 256. We
define the network to predict residuals of reflectance, normal and lighting using separate networks with no shared layers.

The network structure is illustrated in Figure 9. C1, C2, C3, F1, F2, F3 are convolutional layers, D1, D2, D3, D4, D5 are
residual blocks defined in [4]. Each convolutional layer is followed by a Batch Normalization layer [5] and ReLU except for
the output layer.

Table 2 (a) shows the detailed definition about each block for networks used to predict residual reflectance and normal.
Table 2 (b) shows the detailed definition about each block for networks used to predict local residual SH. For reflectance, we
concatenate the image and the upsampled reflectance from the coarse network as input, so the number of input channels is 6.
Similarly, we concatenate the image and upsampled normals from the coarse network as input for network for normals. The
number of input channels is also 6. For the network used to predict local SH, we concatenate the image, upsampled normal,
reflectance and shading as input. As a result, the number of input channels for local SH prediction is 12. Since we predict
the color SH for each pixel, the number of output channels is 27.

Table 2. Details about each block in our second and third scale network shown in Figure 9. (a) shows the detailed structure for network
used to predict reflectance and normal and (b) shows the detailed structure for the network used to predict lighting.

C1 C2 C3 D1 D2 D3 D4 D5 F1 F2 F3

(a)

input channel number 6 32 3 32 32 32 64 32 16 32 32
output channel number 16 3 3 32 32 64 32 32 32 32 32

filter size 5 3 3 3 3 3 32 32 1 1 1
dilation size 1 1 1 1 2 4 1 1 1 1 1

(b)

input channel number 12 32 3 32 32 32 64 32 16 32 32
output channel number 16 3 27 32 32 64 32 32 32 32 32

filter size 5 3 3 3 3 3 32 32 1 1 1
dilation size 1 1 1 1 2 4 1 1 1 1 1



4. Rendering equation of Spherical Harmonics
We use Spherical Harmonics (SH) [2, 9] up to the second order, resulting in a 9 dimensional vector to represent lighting

for each color channel. More specially, the 9 dimensional spherical harmonics in Cartesian coordinates of the surface normal
N = (x, y, z) are:
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Given a surface normal N = (x, y, z) and an SH lighting L, the rendering equation Ψ defined in Equation 1 of the paper
is:

r = f(N,L)

=

2∑
n=0

n∑
m=−n

αnYnmlnm, (1)

where αn =
√

4π
2n+1 , and lnm is the corresponding element in L.

5. Limitation of the proposed method
The limitation of the proposed method is that Spherical Harmonics cannot model non-diffuse effects of the scene. For

example, Figure 10 shows that the specular effect appears in the reflectance image. A more advanced model is needed to deal
with non-diffuse effect of the scene, which is beyond the scope of this paper.

Figure 10. From left to right: input image, reflectance, shading, normal, global SH and local SH predicted by the proposed method. Note
that the specular effect appears in the predicted reflectance.
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