
Markov Weight Fields for Face Sketch Synthesis

Hao Zhou, Zhanghui Kuang and Kwan-Yee K. Wong
Department of Computer Science,

The University of Hong Kong,
Pokfulam Road, Hong Kong.

{hzhou, zhkuang, kykwong}@cs.hku.hk

Abstract

Great progress has been made in face sketch synthesis
in recent years. State-of-the-art methods commonly apply a
Markov Random Fields (MRF) model to select local sketch
patches from a set of training data. Such methods, however,
have two major drawbacks. Firstly, the MRF model used
cannot synthesize new sketch patches. Secondly, the opti-
mization problem in solving the MRF is NP-hard. In this
paper, we propose a novel Markov Weight Fields (MWF)
model that is capable of synthesizing new sketch patches.
We formulate our model into a convex quadratic program-
ming (QP) problem to which the optimal solution is guar-
anteed. Based on the Markov property of our model, we
further propose a cascade decomposition method (CDM)
for solving such a large scale QP problem efficiently. Ex-
perimental results on the CUHK face sketch database and
celebrity photos show that our model outperforms the com-
mon MRF model used in other state-of-the-art methods.

1. Introduction
Face sketch synthesis, being an important branch of face

style transformation [1, 10, 11, 20], has received much at-

tention in recent years, and has many important applications

in both digital entertainment and law enforcement. For in-

stance, some people prefer using face sketches to using re-

al photos as their profile pictures in facebook and personal

websites. Artists may employ face sketch synthesis tech-

nique to simplify animation production. Police officers need

to match a sketch of a suspect drawn by an artist against a

mug-short database to help identifying the suspect. Face s-

ketch synthesis can help narrow down the gap between face

photos and face sketches [16]. Despite its wide applica-

tion, early attempts to synthesize face sketches from photos

were not very successful due to the fundamental difference

between face photos and face sketches. Recently, Markov

Random Fields (MRF) model was introduced to solve this

problem [16], and this brought about great progress to face
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Figure 1. Graphical representations of the MRF and MWF models.

(a) MRF model [16, 19]: each node in the lower sketch layer cor-

responds to a single variable (i.e., the index of a single candidate

sketch patch). (b) Our proposed MWF model: each node in the

sketch layer corresponds to a list of variables (i.e., a list of weights

for the candidate sketch patches).

sketch synthesis. Commonly, face photos and sketches are

divided into patches, and the “best” sketch patch for rep-

resenting a test photo patch will be selected via solving a

MRF. Such methods [16, 19], however, cannot synthesize

new sketch patches as they only represent a target patch by

the best sketch patch from the training data. As a result,

they sometimes cannot produce good results for features

like eyes and mouths which vary a lot from person to per-

son, especially when the number of subjects in the training

data is small. Moreover, the optimization problem involved

in solving the MRF is NP-hard, and the commonly used Be-

lief Propagation (BP) [7, 18] algorithm cannot guarantee to

give an optimal solution.

In this paper, a new face sketch synthesis method is pro-

posed to overcome the aforementioned limitations. We first

propose a novel MRF model that is capable of synthesiz-

ing new sketch patches. Unlike the commonly used MR-

F model [16, 19] in which each node in the sketch layer

corresponds to a single variable (i.e., a single candidate s-

ketch patch), each node in the sketch layer in our model

corresponds to a list of variables (i.e., a list of weights for

the candidate sketch patches), and a target sketch patch is

represented by a linear combination of some candidate s-



ketch patches (see Figure 1). We hence call our model the

Markov Weight Fields (MWF) model. MWF model is su-

perior to the commonly used MRF model in that it can syn-

thesize new sketch patches and can be formulated into a

convex Quadratic Programming (QP) problem to which the

optimal solution is guaranteed. Note that, being a large s-

cale QP problem, MWF model still cannot be solved easi-

ly by off-the-shelf optimization algorithms. By exploiting

the Markov property of our model, we propose a cascade

decomposition method (CDM) to decompose the original

large scale QP problem into a number of small conditional-

ly independent QP problems, each of which can be solved

by some common optimization algorithms, resulting in a

highly parallelizable computing framework.

The contributions of this paper are: (1) Proposing a

MWF model which is capable of synthesizing new sketch

patches, and can be formulated into a convex QP problem

to which the optimal solution is guaranteed; (2) Proposing a

cascade decomposition method to solve the large scale QP

problem based on the Markov property of MWF.

2. Related Work
Most of the research studies in face sketch synthesis fo-

cus on two kinds of sketches, namely profile sketches [4, 17]

and shading sketches [3, 8, 12, 15, 16, 19]. Compared with

profile sketches, shading sketches are more expressive and

popular. By assuming a linear transformation between face

photos and face sketches, Tang and Wang [15] proposed to

compute a global eigentransformation for synthesizing face

sketches from face photos. Face photos and face sketches

are, however, two different modalities, and therefore cannot

be simply explained by a linear transformation. To account

for the non-linearity, Liu et al. [12] adopted a patch-based

approach. Their method divides a face photo into some

overlapping patches and represents each target sketch patch

by a linear combination of some candidate sketch patch-

es. The drawback of [12] is that it synthesizes each sketch

patch independently, and therefore large scale structures s-

panning multiple patches cannot be synthesized well. Wang

and Tang [16] introduced the MRF model to tackle the prob-

lem of preserving large scale structures across sketch patch-

es. Their method synthesizes a face sketch by selecting the

“best” candidate patches that maximize the a posteriori es-

timation of their MRF model. Zhang et al. [19] further

extended the work of Wang and Tang [16] by introducing

shape priors specific to facial components and using SIFT

feature [13] as a descriptor of each photo and sketch patch.

Their method was proven to be robust against illumination

changes and pose variations. Computing the maximum a

posteriori of their MRF model, however, can only produce

an approximate solution, and selecting the “best” candidate

sketch patch cannot synthesize new patches that do not exist

in the training data. In contrast, our MWF model is capa-

ble of preserving large scale features as well as synthesizing

new sketch patches. Besides, it can also be formulated in-

to a convex QP problem to which the optimal solution is

guaranteed.

Large scale QP problems have been well studied in com-

puter vision because of its important applications [9, 14].

A popular approach is decomposing the original large scale

problem into smaller sub-problems. Osuna et al. [14] pro-

posed an iterative method in which variables are decom-

posed into a working set and a fixed set, and only those in

the working set are being optimized in each iteration. Their

method determines the working set arbitrarily, and only one

variable in the working set will be replaced after each iter-

ation. Joachims [9] proposed an algorithm to select a good

working set by finding the deepest feasible direction. As

their objective function was too complicated, they used a

first order approximation to formulate the problem [2]. D-

ifferent from [9, 14], we propose a cascade decomposition

method based on the Markov property of our model. In this

method, variables are divided into two working sets whose

memberships are fixed throughout the whole optimization

process, and are optimized alternatively. By carefully se-

lecting these two sets, each set can be further decomposed

into many smaller independent QP problems, each of which

can be optimized efficiently.

3. Markov Weight Fields
Consider a training data set consisting of M face photo

sketch pairs. We divide each photo into N overlapping l× l
patches and represent each of them by a L-vector where

L = l2. Likewise, we divide each sketch into N patches

and represent each of them by a L-vector. Now given a test

face photo, we divide it into N patches in exactly the same

way we have done for the training data. Let ti denote the L-

vector of the ith test patch, where i ∈ 1 . . . N . For each test

patch, we find K candidate photo patches from the training

data that are “closest” to it in terms of Euclidean distance

between their L-vectors. Let pi,k and si,k denote the L-

vectors of the kth candidate photo patch and its correspond-

ing sketch patch, respectively, for the ith test patch. We

assume a test photo patch and its target sketch patch can be

represented by the same linear combination of the K can-

didate photo patches and sketch patches respectively. The

rationale behind this has already been discussed in [12].

Figure 1 (b) shows a graphical representation of the pro-

posed MWF model. Similar to the MRF model in [16, 19],

our MWF model consists of two layers, namely the upper

photo layer and the lower sketch layer. As in [16, 19], each

node in the photo layer corresponds to a test photo patch.

Unlike [16, 19] where each node in the sketch layer cor-

responds to (the index of) a single candidate sketch patch,

each node in our sketch layer corresponds to a list of weight-

s for the K candidate sketch patches, denoted by the K-



vector wi with elements wi,k being the weight of the kth

candidate sketch patch for the ith test patch. The joint prob-

ability of ti and wi, ∀i ∈ {1, . . . , N}, is given by

p(t1, ..., tN ,w1, ...,wN )

∝
N∏
i=1

Φ(ti,wi)
∏

(i,j)∈Ξ

Ψ(wi,wj), (1)

where

Φ(ti,wi) = exp{−||ti −
K∑

k=1

wi,kpi,k||2/2σD
2} (2)

and

Ψ(wi,wj)

= exp{−||
K∑

k=1

wi,ko
j
i,k −

K∑
k=1

wj,ko
i
j,k||2/2σS

2}.(3)

Here (i, j) ∈ Ξ means the ith and jth patches are neigh-

bors. oj
i,k denotes the overlapping area of the kth candidate

for the ith sketch patch with the jth patch. The posterior

probability can be written as

p(w1, ...,wN |t1, ..., tN )

=
1

Z
p(t1, ..., tN ,w1, ...,wN ), (4)

where Z = p(t1, ..., tN ) is a normalization term. By maxi-

mizing the posterior probability, the best weight for each of

the candidate sketch patch can be achieved. This is equiva-

lent to minimizing the following cost function

min
W

N∑
i=1

||ti −PiW||2 + α
∑

(i,j)∈Ξ

||Oj
iW −Oi

jW||2. (5)

Here α = σD
2/σS

2. Pi and Oj
i are two matrices, with the

((i− 1)K + k)th column being pi,k and oj
i,k, respectively,

and all other columns being zero vectors. W is a NK-

vector, with the ((i − 1)K + k)th element being wi,k. (5)

can be formulated into a standard QP problem:

min
W

WTQW − 2WTH+V. (6)

where

Q =

N∑
i=1

PT
i Pi

+α
∑

(i,j)∈Ξ

(Oj
i −Oi

j)
T(Oj

i −Oi
j), (7)

H =

N∑
i=1

PT
i ti, (8)

V =

N∑
i=1

tTi ti. (9)

In order to make this optimization trackable, we enforce W
to satisfy the constraint

∑K
k=1 wi,k = 1 and wi,k ≥ 0 for all

i, k. As the term V in (6) has no effect on the minimization,

we can ignore this term in the final formulation:

min
W

WTQW − 2WTH

s.t. AW = b

wi,k ≥ 0, ∀i ∈ {1, . . . , N}, k ∈ {1, . . . ,K}.
(10)

Here A is a N × NK matrix. For the ith row of A, the

elements from ((i − 1)K + 1) to (i × K) are 1 and all

others are 0. b is a N -vector with all elements being 1. (10)

is a standard QP problem and as α > 0,(5), (6) and (10) are

convex. Our model, as a result, has a very good property

that the global optimum can be achieved.

4. Cascade Decomposition Method
Directly solving (10) using off-the-shelf optimization al-

gorithms is intractable due to the extremely high dimension

of W. For instance, the number of variables will be more

than 19, 000 in our problem which is too large to be opti-

mized simultaneously. Inspired by the work of [9, 14] and

considering the structure of MWF, we propose an efficien-

t way to solve this large scale optimization problem which

we call cascade decomposition method.

In our proposed method, variables are divided into two

sets, namely WB and WF , and Q, H, A and b are divided

accordingly:

W =

(
WB

WF

)
,

Q =

(
QBB QBF

QFB QFF

)
, H =

(
HB

HF

)
,

A =

(
AB 0
0 AF

)
, b =

(
bB

bF

)
. (11)

Since Q is symmetric, QFB
T = QBF , and the original

optimization problem can be written as

min
WB ,WF

WT
BQBBWB − 2WT

BHB + 2WT
BQBFWF

+WT
FQFFWF − 2WT

FHF

s.t. ABWB = bB

AFWF = bF

wi,k ≥ 0, ∀i ∈ {1, 2, ..., N}, k ∈ {1, 2, ...,K}.
(12)

Notice that if we fix one set of the variables and optimize

(12) with respect to the other, the problem is still convex.

We therefore propose to solve this problem by optimizing

WB and WF alternatively.



Nonetheless, we still need to solve two large scale op-

timization problems. Fortunately, by taking the advantage

of the structure of MWF, these two sub-problems can be

solved by optimizing many independent smaller problem-

s if WB and WF are chosen carefully. According to the

Markov property of the MWF model, if all the neighbors

of wi are known, wi will be independent of all the oth-

er nodes in the sketch layer. Based on this observation we

choose WB and WF as follows:

WB = {wi(p,q)|(p+ q)%2 = 0}, (13)

WF = {wi(p,q)|(p+ q)%2 = 1}. (14)

Here i(p, q) denotes the index of the node located at the pth

row and qth column of the MWF. By dividing the nodes in

this way, every node in WB will be independent of each

other when WF is fixed, and vice verse. This allows a fur-

ther decomposition of WB and WF into many smaller sets,

each of which only contains one single node (i.e., wi). The

number of variables in each optimization problem is then

reduced to K. The final optimization problem we need to

solve becomes:

min
wi

wi
TQiiwi + 2wi

T(

4∑
a=1

Qiawia −Hi)

s.t. Aiwi = 1

wi,k ≥ 0, ∀k ∈ {1, 2, ...,K}. (15)

Here wia is the neighbor node of wi, and Qii, Qia, Hi and

Ai are the decomposition of Q, H and A according to wi

and wia respectively.

Algorithm 1 Cascade Decomposition Method

Initialize W according to the distances between the test

and candidate photo patch vectors.

repeat
Step 1 For every node wi ∈ WB

compute Qii,Ai,Qia,Hi and wia,

optimize (15) with respective to wi.

Step 2 For every node wi ∈ WF

compute Qii,Ai,Qia,Hi and wia,

optimize (15) with respective to wi.

until W does not change any more.

The process of cascade decomposition method is sum-

marized in Algorithm 1. Each optimization procedure

within Step 1 and Step 2 of Algorithm 1 can actually be

computed in parallel as they are independent of each other.

This makes the algorithm very efficient. We find that our

algorithm will normally converge within 10 iterations.

5. Experiments

5.1. Implementation Details

A coarse to fine approach is adopted. Firstly in the coarse

step, face photos are divided into patches with a size of

20× 20, and adjacent patches have a 5-pixel-wide overlap-

ping area. Coarse face sketches are synthesized using the

proposed MWF method. Next in the fine step, face photos

are divided into smaller patches with a size of 10×10, and a-

gain adjacent patches have a 5-pixel-wide overlapping area.

An additional smoothing term is included in the objective

function of the fine step to enforce the synthesized sketch

patches being consistent with the corresponding patches

synthesized in the coarse step. For each test photo patch,

K = 10 candidates are selected from the training data. S-

ince photos have been aligned by the positions of the eyes,

to save computation time, candidates of a test patch are s-

elected from within a 30 × 30 local region around it in the

coarse step, and a 26 × 26 local region in the fine step. In

both steps, α is set to 0.25. In the fine step, the weight of the

smoothing term for ensuring the consistency of the sketch-

es synthesized in the two steps is set to 0.08. A minimum

error boundary method [6] is used to find the cutting path

between the overlapping area of two adjacent patches. Like

[16], we use Luv color to form the vectors representing the

photo and sketch patches.

5.2. Experimental Results

We validated our method using the CUHK database [16]

which contains 188 photo sketch pairs. In all the experi-

ments, 88 subjects from the database were selected as the

training data, and the rest 100 were used as test cases. Be-

sides, we tested our method using photos with pose vari-

ations and photos of some Chinese celebrities. We com-

pared our results with those produced by other state-of-the-

art methods to demonstrate the high quality of our results.

In Figure 2, we compare our results with those published

in [12]. As pointed out in [16], the results of [12] cannot

preserve large scale features, whereas our results do not suf-

fer from such a problem.

Figure 3 shows the comparison of our results with those

synthesized by the MRF method proposed in [16]. It can

be seen that their method cannot synthesize the eyes and

mouths very well. One reason is that eyes and mouths are

two distinctive features of human face, and they vary a lot

from person to person. Therefore, there is a high chance that

the MRF method cannot find a suitable patch in the train-

ing data for some target patches containing eyes or mouths.

Another reason is that the formulation of their energy func-

tion is NP-hard, and the BP algorithm used in their method

cannot guarantee to give the optimal solution. This implies

that even if there exists a suitable patch in the training data

for a target patch, there is still a chance that their method



(a) Photos
(b) Liu et
al. [12]

(c) Ours (d) Artist

Figure 2. Face sketch synthesis results.

may not be able to find that patch. Unlike the MRF method,

our MWF model uses a linear combination of 10 candidate

sketch patches to synthesize the target patch, and can gen-

erate new patches that do not exist in the training data. To

give a quantitative evaluation, we compare the sketches syn-

thesized by these two methods using the rank-1 and rank-10

recognition rates1 on the 100 test cases. We simply used P-

CA [5] as the recognition method, and the sketches drawn

by the artist were used as the training data for computing

the projection matrix. Figure 4 shows the recognition re-

sults for the sketches produced by these two methods. We

can see that the recognition rates for the sketches generat-

ed by our MWF model are higher than those by the MRF

model.

Although our method spares no special effort in dealing

with pose variation, we also tested it on the pose variation

data set. For these photos, aligning the positions of the eyes

cannot align the faces very well. Hence, the candidate s-

ketch patches of a target patch were selected from within a

larger local region (60 × 60 and 50 × 50 in the coarse and

1Although recognition rates cannot reflect the visual quality of syn-

thesized sketches completely, it is the only way we know to evaluate the

quality of synthesized sketches quantitatively [19].

(a) Photos
(b) Wang and

Tang [16]
(c) Ours (d) Artist

Figure 3. Face sketch synthesis results.

fine steps respectively). Figure 5 shows some synthesized

face sketches under pose variation. We find that our results

are comparable to or even better than those produced by the

method in [19], which is specially designed to tackle pose

variation. The method proposed in [19] uses the same MRF

model as in [16], and thus it suffers from the same problem

of not being capable of synthesizing new patches. This can

be seen in the sketches of the first and second subjects in

Figure 5 (the eyes synthesized by their method are not as

good as ours).

We also tested our method on some photos of Chinese

celebrities. As the colors in these photos are quite different

from those in the training data, we simply converted all the

photos into gray-scale, and directly used the gray level in-

tensity to form the vectors representing the photo patches.

From Figure 6, it can be seen that our results look more nat-

ural than those produced by [16] and [19]. The reason be-

hind this is that these photos are quite different from those

in the training data, and it is very hard to find suitable patch-

es for the target patches. By using a linear combination of

candidate sketch patches, our method can synthesize some

new patches which can better represent the target patches.

By interchanging the roles of photos and sketches, our
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(a) Photos
(b) Wang and

Tang [16]

(c) Zhang et al.
[19]

(d) Ours

Figure 5. Synthesized sketches with pose variation.

method can also be used to synthesize photos from sketches.

Figure 7 shows the photos generated by our method using

the sketches drawn by artist as input. It can be seen that the

synthesized photos are very similar to the original photos.

6. Discussion
In this paper, we proposed a new MRF model which we

call Markov Weight Fields for face sketch synthesis. Dif-

(a) Photos
(b) Wang and

Tang [16]

(c) Zhang et al.
[19]

(d) Ours

Figure 6. Synthesized sketches for Chinese celebrities.

ferent from the commonly used MRF model, our model is

capable of synthesizing new sketch patches as a linear com-

bination of candidate sketch patches. Besides, our mod-

el can be formulated into a convex quadratic programming

problem which is guaranteed to have an optimal solution.

An efficient cascade decomposition method was proposed

to solve this large scale QP problem which can often con-

verge within 10 iterations. A large number of experiments

proved that our method outperforms other state-of-the-art

methods, especially when there is no suitable sketch patch

in the training data for a target patch.
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