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Abstract

In this paper, we present a novel interactive image seg-
mentation technique that automatically learns segmentation
parameters tailored for each and every image. Unlike exist-
ing work, our method does not require any offline parame-
ter tuning or training stage, and is capable of determining
image-specific parameters according to some simple user
interactions with the target image. We formulate the seg-
mentation problem as an inference of a conditional random
field (CRF) over a segmentation mask and the target image,
and parametrize this CRF by different weights (e.g., color,
texture and smoothing). The weight parameters are learned
via an energy margin maximization, which is solved using
a constraint approximation scheme and the cutting plane
method. Experimental results show that our method, by
learning image-specific parameters automatically, outper-
forms other state-of-the-art interactive image segmentation
techniques.

1. Introduction
In image segmentation, we aim at separating an objec-

t of interest from the rest of the image. This is useful for

pasting the object into a new context, and has applications

in computational photography, image synthesis, and visual

effects for film making. Unfortunately, no fully automat-

ic system has been shown to be accurate, robust, and un-

ambiguous for all sorts of challenging inputs. On the other

hand, semi-automatic interactive image segmentation meth-

ods [6, 7, 12, 17] have produced very impressive results

with a reasonable amount of user interactions. Very often

there exist some parameters in a segmentation model, and

inappropriate choice of such parameters may result in unsat-

isfactory segmentations. A common practice is to manually

adjust the segmentation parameters until desired segmenta-

tions can be achieved on a few representative test images.

The underlying assumption is that there exists a parameter

setting that works for a variety of images represented by the

few test images.

There do exist some research studies [5, 19, 1] that do not
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Figure 1. Segmentation results produced by the proposed method.

Optimal parameter weights for color, texture, and smoothing are

estimated from just a single image.

require manual parameter selection. They learn the param-

eters of an energy minimization from supervised training

data using cross validation, pseudolikelihood, or structured

support vector machines. Typically, the following assump-

tions are made in learning the parameters: i) Ground truth

segmentations are available for a large number of training

images; ii) Model parameters learned from the training data

can be generalized to unseen images.

Unfortunately, the underlying assumptions for the afore-

mentioned manual parameter selection and supervised

training are not necessarily true. In general, different im-

ages require distinct sets of parameters that produce opti-

mal segmentation results. For example, in Fig. 1, when

segmenting the red flower, color is the main discrimina-

tive feature. When segmenting the cat, texture is the main

discriminative feature. Yet, when segmenting the rice bas-

ket, stronger spatial smoothing is required to avoid over-

segmentation. Sometimes, even for the same image, having

constant model parameters is undesirable (see the last two

rows of Fig. 7). Therefore, existing interactive segmenta-

tion methods based on training data cannot be expected to

give optimal results because they use a constant set of pa-

rameters for all images.

For an interactive image segmentation system to achieve

optimal results, it becomes necessary to find a parameter

setting tailored for each and every image. When there ex-

ists ambiguity in segmentation, it is also necessary to find



a parameter setting most consistent with the intention of a

specific user. To avoid extensive manual intervention while

still meeting these requirements, the system needs to be suf-

ficiently “intelligent” to determine which types of image re-

gions should belong to the foreground according to the hints

provided by scarce user interactions. The system should be

able to understand the user’s intention and learn the relative

importance of different features.

In this paper, we propose an interactive segmentation

method based on just a single image (i.e., the image to be

segmented). A conditional random field (CRF) is parame-

terized and iteratively solved to find the optimal parameters

(weights for color, texture, and smoothing terms) that glob-

ally solve the segmentation. To do this, we first start with

the user’s interaction as hard constraints and generalize it to

unlabeled regions by maximizing an energy margin. This

ambiguous problem becomes tractable with a novel con-

straint approximation scheme. Since all parameters of the

CRF are learned automatically just from the image to be

segmented, the system does not require any training images

or hand-tuned parameters. As a result, the proposed method

can be applied to different image domains and determine the

optimal parameters based on a specific image.

2. Related Work
An interactive image segmentation technique based on

graph cut was first presented in [6]. Since then, a large

number of interactive methods have been proposed, includ-

ing Grabcut [17], lazy snapping [12], random walker [8],

geodesic matting [2], and TVSeg [22].

These methods usually require manual setting of some

parameters. Researchers have also developed learning

methods for estimating such parameters automatically. In

[5], Blake et al . introduced an adaptive Gaussian Mixture

Markov Random Field method that can learn Ising param-

eters from training images. Their extension to graph cut

results in a system that puts less burden on the user. More

recently, Szummer et al . [19] proposed an efficient learning

method for multiple parameters. Their learning is formu-

lated as minimizing a loss function over training images.

Both of the above learning methods require ground truth

segmentations, and estimate constant parameters that can-

not be expected to give optimal results for different classes

of images.

To overcome the above problems, Peng and Veksler [16]

proposed an interesting method that learns image-specific

parameters for the graph cut segmentation algorithm. Their

classifier does not require ground truth segmentations, but

instead 10 segmentation results that are manually labeled as

either ‘good’ or ‘bad’ for each image in the training data.

Their method is computationally expensive (it uses a brute-

force search) and does not scale well. In contrast to their

work, our method efficiently optimizes a multi-dimensional

parameter space and does not require such ’good’ / ’bad’ la-

bels. Kirmizigül and Schlesinger [10] introduced an image-

specific method that learned a single smoothing parameter.

They proposed an incremental learning technique that pro-

duces a set of feasible parameters in each iteration, and re-

quires the user to refine the segmentation in each iteration.

Since they used parametric max-flow, their method cannot

be extended to multiple dimensions.

Parameter learning is also found in related fields, such as

image labeling [3, 9, 11, 14, 15]. In contrast to these works,

our method learns the parameters from incomplete ground

truth (from simple user interactions) and does not require

multiple images. To the best of our knowledge, our pro-

posed method is the first to learn multiple CRF parameters

from just a single image.

3. Parameter Learning from a Single Image
Image segmentation can be casted as an inference of

a conditional random field over an image mask y =
[y1, · · · , yN ] and an image x = [x1, · · · , xN ] with the form

p(y|x,w) =
1

Z(x,w)
e(−E(y,x,w)), (1)

where w is a parameter vector and Z(x,w) is a partition

function. The energy function is usually given by

E(y,x,w) =
∑
i∈ν

∑
k∈K

wd
kdk(yi,x)

+
∑

(i,j)∈ε

∑
t∈T

ws
tst(yi, yj ,x), (2)

where ν is the index set of graph nodes (image pixels),

ε is the index set of graph edges (adjacent pixel pairs),

K is the index set of features (e.g., color and texture),

and T is the index set of smoothness regularization terms.

dk(yi,x) and st(yi, yj ,x) are unary terms and pairwise s-

moothing terms respectively. We assume that both dk(yi,x)
and st(yi, yj ,x) are positive, st(yi, yj ,x) = st(yj , yi,x),
and st(yi, yj ,x) = 0 when yi = yj . We concatenate∑

i∈ν dk(yi,x) and
∑

(i,j)∈ε st(yi, yj ,x) to form a vector

function Ψ(x,y). The energy function is therefore linear in

the nonnegative parameter w with the form E(y,x,w) =
wTΨ(x,y).

3.1. Maximizing an Energy Margin

In our interactive image segmentation system, we obtain

a trimap based on simple user interactions. Let F , B and

U be the index sets for foreground, background and un-

known (unlabeled) pixels, respectively, labeled by the user

(see Fig. 2). Let yF , yB and yU denote subsets of y in-

dexed by F , B and U respectively. Our method is based on

the principle that the final segmentation result should not
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Figure 2. Interactions for image segmentation. (a) Original im-

age with superimposed polygons drawn by a user. (b) Labeled

foreground (F ), background (B), and unknown (U ) regions. The

contour in U is the true foreground boundary.

contradict with the user input. Let the ground truth segmen-

tation mask be ȳ, with ȳF = 1, ȳB = 0, and ȳU a binary

|U |-dimensional vector. The energy for the ground truth

segmentation should not be bigger than any other mask y,

i.e.,

wTΨ(x,y)−wTΨ(x, ȳ) ≥ 0 ∀y �= ȳ. (3)

The inequalities in (3) enforce valid constraints on w.

However, typically there will be multiple solutions for

which the set of inequalities is feasible. To specify a u-

nique solution, we maximize the separation margin (sup-

pose to be positive) given by the energy difference between

the segmentation mask ŷ = argminy �=ȳw
TΨ(x,y) and

the ground truth. This gives

max γ
s.t. wTδ(x,y, ȳ) ≥ γ ∀y �= ȳ, ‖w‖ = 1,

(4)

where δ(x,y, ȳ) = Ψ(x,y) − Ψ(x, ȳ). Maximizing the

energy margin regularizes the ambiguous problem. Equa-

tion (4) can be reformulated into a standard quadratic prob-

lem as

min 1
2w

Tw
s.t. wTδ(x,y, ȳ) ≥ 1 ∀y �= ȳ.

(5)

To avoid no solutions and to be robust to noise, a positive

slack variable ξ is introduced, and the energy function is

optimized with a soft-margin criterion

min 1
2w

Tw + Cξ
s.t. wTδ(x,y, ȳ) ≥ 1− ξ ∀y �= ȳ, ξ ≥ 0,

(6)

where C (C = 5 for all our experiments) balances the loss

and regularization terms. Equation (6) just considers a 0-

1 loss function which penalizes all non-ground truth masks

y with 1. To penalize a mask with larger difference to the

ground truth more severely than one with a smaller differ-

ence, we introduce a re-scale margin inspired by [20]

min 1
2w

Tw + Cξ
s.t. wTδ(x,y, ȳ) ≥ Δ(y, ȳ)− ξ ∀y �= ȳ, ξ ≥ 0,

(7)

where Δ(y, ȳ) is the hamming distance defined as

Δ(y, ȳ) =
∑
i∈ν

I(yi �= ȳi), (8)

and I(·) is an indicator function. There are two challenges

in solving (7), namely

1. ȳ is only partially known, and

2. the number of constraints is huge (2N − 1).

For the first problem, we propose a novel constraint approx-

imation scheme to simplify the original optimization prob-

lem. For the second problem, we use the cutting plane algo-

rithm [21] to overcome exponential number of constraints.

3.2. Constraint Approximation and Analysis

The ground truth at the unlabeled region ȳU is fixed but

unknown. It is impossible for us to rewrite the constraints in

(7) into inequalities parameterized by w only. To make the

optimization problem tractable, we approximate the con-

straints and optimize the following problem:

min 1
2w

Tw + Cξ
s.t. wTδ(x,y, ȳ) ≥ Δ(y, ȳ)− ξ ∀y �= ȳ,y ∈ Ω, ξ ≥ 0,

(9)

where Ω = {y|yU = ȳU∧yJb = ȳJb} with J = F∪B and

Jb = {p|p ∈ J ∧ ∃p′ ∈ U, (p, p
′
) ∈ ε}. Intuitively, Jb is

the boundary pixel set of labeled regions and Ω is a limited

segmentation mask space, whose elements are image masks

having identical labels with ground truth in the unlabeled

regions and along the boundary of labeled regions. For any

y ∈ Ω, δ(x,y, ȳ) and Δ(y, ȳ) depend only on the mask of

labeled regions yJ and ȳJ , and (9) can be rewritten as

min 1
2w

Tw + Cξ
s.t. wTδ(x,yJ , ȳJ) ≥ Δ(yJ , ȳJ)− ξ
∀yJ �= ȳJ ,yJb = ȳJb , ξ ≥ 0,

(10)

where

δ(x,yJ , ȳJ) =

⎡
⎢⎢⎣

∑
i∈J\Jb

d(yi,x)− d(ȳi,x)∑
i,j∈J
(i,j)∈ε

s(yi, yj ,x)− s(ȳi, ȳj ,x)

⎤
⎥⎥⎦
(11)

and

Δ(yJ , ȳJ) =
∑

i∈J\Jb

I(yi �= ȳi) (12)

with d() and s() indicating concatenations of dk() and st()
in (2) respectively.

The above constraint approximation reduces the possible

number of constraints from 2N −1 to 2|J\J
b|−1, and leads

to an approximation of the feasible domain. Let Θ and Θ
′
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Figure 3. Synthetic Gestalt example with small labeled regions.

From left to right: Image with user input. Segmentation result with

initial parameters. Segmentation result with learned parameters.

be the feasible sets of parameter w defined by (7) and (9)

respectively. We have Θ ⊆ Θ
′

since constraints in (9) are

a subset of constraints in (7). Note that the approximation

error (i.e., the difference of optimal w between (7) and (9)

) depends on |U | ( i.e., the number of unlabeled pixels). In

addition, it depends on image statistics of the labeled and

unlabeled regions. We confirmed experimentally on hun-

dreds of images that such an approximation is reasonable to

determine a good set of parameters, resulting in segmenta-

tions superior to most of the existing methods.

Although the approximation error depends on |U |, it

does not mean we need to increase user’s burden in learning

a parameter configuration which can achieve a high quali-

ty segmentation due to two reasons. First, users can easi-

ly construct simple polygons to cover large areas. There-

fore, |U | can be small with limited interactions. Second, as

long as feature statistics of the labeled and unlabeled region-

s are similar (also required by all other global segmentation

methods), our algorithm can learn parameters well with s-

mall labeled regions. We tested the proposed method on

synthetic data (see Fig. 3). It can be seen that our algorithm

can learn strong smoothing regularization to produce a seg-

mentation with spatial proximity of small blocks according

to small labeled regions.

The constraints in (9) encourage the final segmentation

mask ỹ with learned parameters w̃ to be consistent with

ȳ in regions J . Therefore, it can avoid over-segmentation.

In addition, the wTw term in the objective function penal-

izes high smoothness regularization terms to avoid under-

segmentation.

3.3. Structural Learning

Although the above approximation scheme has greatly

reduced the number of constraints, there is still an exponen-

tial number of constraints in (9) with respect to
∣∣J \ Jb

∣∣.
We incrementally find a small set of most violated con-

straints that ensures a sufficiently accurate solution based

on the cutting plane algorithm [21]. This is summarized in

Algorithm 1. Our algorithm converges in less than 25 iter-

ations for most of the images, potentially allowing it to run

in realtime [23].

Line 5 of Algorithm 1 searches for the most violated con-

Algorithm 1 Structural learning for (10)

1: Input x, F and B. Define ȳ according to F and B.

2: Empty the most violated constraint set S = ∅ .

3: Initialize parameters w.

4: repeat
5: Find the most violated constraint by y∗

J ←
argminyJ wTδ(x,yJ , ȳJ)−Δ(yJ , ȳJ) s.t. yJb = ȳJb ,

and set S = S ∪ {y∗
J}.

6: Learn parameter w by solving the following problem:

min
w

1
2
wTw + Cξ

s.t. wTδ(x,yJ , ȳJ) ≥ Δ(yJ , ȳJ)− ξ ∀yJ ∈ S, ξ ≥ 0.

7: until w does not change any more.

straint for the current parameter w by minimizing an ener-

gy function. It can be optimized by graph cut. In order to

guarantee the constraint yJb = ȳJb is satisfied, we set the

boundary of F to be foreground and that of B to be back-

ground as hard seed points. Line 6 updates the parameter w
according to the most violated constraint set S.

4. Implementation Details
We employ two feature descriptors to describe color and

texture respectively (i.e., |K| = 2 in (2)). Color is repre-

sented by intensity (gray images) or RGB (color images)

values for each pixel. We build two global histograms to

model background and foreground colors respectively. The

number of bins for each feature dimension is fixed at 40.

The likelihood based on color pc(x|yi) can be obtained di-

rectly from the histogram.

To extract texture features, classical structure tensors

[18] are computed. Foreground and background texture

models are represented again by two global histograms, and

the likelihood for texture pt(x|yi) is estimated in the same

way as color.

After computing the likelihoods, the data term in (2) is

defined by dk(yi,x) = − log(pk(x|yi)) with k ∈ {c, t}.

We use contrast-based regularization [17] as the single s-

moothing term st(yi, yj ,x). Note that all the feature de-

scriptors and smoothing regularization term can be prepro-

cessed.

5. Experimental Results
We evaluated our proposed approach by three group-

s of experiments. Segmentation accuracy was measured

by overall pixel accuracy Ma and the foreground overlap-

ping ratio Mo as in [4]. Here, performance of segmen-

tation was measured only in unlabeled regions since the

labeled region can always be segmented correctly as hard

seed points. We defined Ma = 1
|U |

∑
i∈U I(yi = ȳi) and

Mo =
∑

i∈U I(yi ∧ ȳi)/
∑

i∈U I(yi ∨ ȳi).
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Figure 4. Segmentation results and learned parameters for SZebra,

FZebra, Maple, and Bear (from top to bottom).

0 5 10 15 20
60

70

80

90

100

No. of iterations

M
a
(%

)

SZebra

FZebra

Maple

Bear

0 5 10 15 20
60

70

80

90

100

No. of iterations

M
o
(%

)

SZebra

FZebra

Maple

Bear

0 5 10 15 20
10−10

10−7

10−4

10−1

102

No. of iterations

E
n
er
g
y

SZebra

FZebra

Maple

Bear

(a) (b) (c)

Figure 5. Performance of the proposed method. (a) Overall accu-

racy. (b) Foreground overlapping ratio. (c) Energy of the segmen-

tation result.

5.1. Performance of Our Approach

We first tested our algorithm on four images (see Fig. 4)

to demonstrate its ability to iteratively learn the parameter

according to image contexts and user interactions. Let us

name the images in Fig. 4, from top to bottom, as side ze-

bra (SZebra), front zebra (FZebra), Maple and Bear. For

both SZebra and FZebra, the initial segmentation result-

s were poor with initialized parameters. This can be seen

from the second column, which shows the segmentation re-

sults before the first iteration. For SZebra, foreground and

background can be easily distinguished by color, which is

reflected in the estimated parameter weights in the last col-

umn. For Maple, color is important. However, this time

smoothing must be weak to avoid under-segmentation. For

Bear, at first glance, it may seem that texture should be

a more discriminative feature than color. However, our

learned parameters indicate that color is the dominant fea-

ture. This suggests our intuition can sometimes be wrong,

and therefore it is better to determine the parameters auto-

matically.

Parameter weights: � color � texture � smoothing
Figure 6. Challenging examples.

Fig. 5 shows the performance of our algorithm against

the number of iterations. Both the overall pixel accuracy

and overlapping ratio increase with fluctuations. The fluc-

tuations become smaller and smaller as the algorithm con-

verges. Such fluctuations happen because our algorithm al-

ways tries to find the most violated constraints. The ener-

gy of the segmentation result keeps increasing until conver-

gence as our algorithm adds more and more constraints into

the most violated constraint set S.

We also tested the proposed method on challenging im-

ages (see Fig. 6).

5.2. Comparison with Other Parameter Learning
Methods

We compared our parameter learning method with three

other parameter learning methods, namely the brute force

method1 (BFM) [5], learning CRFs using graph cut (LCGC)

[19], and learning segmentation quality measurement2 (L-

SQM) [16]. Note that both BFM and LSQM just learn the

weight of the smoothing term by searching a discretized pa-

rameter space. Here we extend these methods to learning a

three dimensional parameter. These extended methods are,

however, impractical since they are very time-consuming.

For BFM and LSQM, we descretized the parameter space

[0, 2] × [0, 2] × [1, 97] into 11 × 11 × 13 samples using

equal intervals.

The evaluation was performed on a challenging database

of 50 images (selected from the Berkeley dataset [13] and

various other internet sources) for which ground truth seg-

mentations are available. For a fair comparison, the same

user provided segmentation masks and the same vector

functions Ψ(x,y) were used. For methods that require

training images, 5-fold, 10-fold, and 50-fold cross valida-

tions were implemented. Table 1 summarizes the average

segmentation accuracy using the parameters learned by our

proposed method and aforementioned three methods. We

also segmented each image with all possible parameter sam-

ples to find the ‘optimal’ parameter that produced the best

1Weight of smoothing is determined by brute force search.
2Code provided by the authors



Table 1. Average segmentation accuracy compared with other pa-

rameter learning methods.
Methods Ma (%) Mo (%)

BFM [5]

5-fold cross-validation 95.7 90.0

10-fold cross-validation 95.8 90.0

50-fold cross-validation 95.8 90.0

LSQM [16]

5-fold cross-validation 92.0 83.3

10-fold cross-validation 93.3 85.0

50-fold cross-validation 92.6 84.0

LCGC [19]

5-fold cross-validation 95.7 89.8

10-fold cross-validation 95.7 90.0

50-fold cross-validation 95.7 90.0

Proposed method 96.5 91.6
Optimal parameter 97.1 92.8

segmentation result as compared with the ground truth. As

expected, the average accuracy of the proposed method is

lower than that with ‘optimal’ parameter since the feature

statistics of the unlabeled and labeled regions are not simi-

lar enough for some of the images. However, it is closest to

the optimal result compared with the other methods. This

shows that each image should have its own set of optimal

parameters. Although our method only slightly improves

the accuracy, it makes sense since very small differences be-

tween segmentation and ground truth may still require much

labor to refine in interactive segmentation.

Fig. 7 demonstrates the segmentation results of four ex-

amples using the different methods. For the first image, our

method learned a weak smoothing regularization so the leg

is segmented correctly. For the second image, our method

learned strong texture weight and strong smoothing regu-

larization to distinguish face from foreground and enhance

spatial coherence. The third and fourth are the same im-

age with different user interactions. It can be seen that our

method understands user’s intention.

5.3. Comparison with Other Interactive Methods

We qualitatively compared our image segmentation

method with other state-of-the-art methods using default pa-

rameter setting. These methods include (i) graph cut3 (GC)

[6], (ii) random walker4 (RW) [8], (iii, iv, v) three variation-

s of geodesic matting5 (with geodesics computed on likeli-

hood image gradients (GM-LIG), image gradient (GM-IG),

and smoothed image gradient (GM-SIG)) [2], (vi) lazy s-

napping6 (LS) [12], (vii) TVSeg 7 (TS) [22] and (viii) Grab-

cut8 [17].

Note that methods (i)∼(vii) all used the same user inter-

action. The evaluation result on a single image is shown in

Fig. 8. It can be seen from the learned parameters of the

3http://www.robots.ox.ac.uk/ vgg/research/iseg/
4http://cns.bu.edu/ lgrady/software.html
5http://www.robots.ox.ac.uk/ vgg/research/iseg/
6http://www.cs.cmu.edu/ mohitg/segmentation.htm
7http://gpu4vision.icg.tugraz.at/
8OpenCV 2.3

input image GC [6] RW [8]

GM-LIG [2] GM-IG [2] GM-SIG [2]

LS [12] TS [22] proposed method

Parameter weights: � color � texture � smoothing
Figure 8. Comparison with other interactive image segmentation

methods.

proposed method that color is a dominant feature. We have

selected this image to make it fair to those methods that do

not use texture features. It can be seen that the proposed

method outperforms all the other seven methods. For GC,

the segmented foreground has artifacts around the bound-

ary. For the other six methods, some parts of the foreground

are not segmented which might be due to weak likelihood

estimation or strong spatial smoothing.

Grabcut uses a more simple user interaction. In Fig. 9,

we compare the proposed method with Grabcut. Although

the proposed method requires slightly more user interac-

tions, it achieves significantly better results. In fact, one

may find drawing two simple polygons (as in our method)

takes less time than fitting a tight rectangle around an object

(as in Grabcut). There are three reasons why our method

outperforms Grabcut. First, our method uses both col-

or and texture to distinguish foreground from background

while Grabcut only uses color. Second, histograms (non-

parametric models) are used in our approach while GMMs

(parametric model) are employed in Grabcut. It is well-

known in machine learning that non-parametric models in

general can achieve better classification performance than

parametric models in low dimension space. Third, our poly-

gon interaction is more flexible than a rectangle.

6. Conclusions
In this paper, we have introduced a novel technique that

automatically and simultaneously determines the optimal

image segmentation and its associated segmentation param-

eters. Users are only required to draw two simple polygon-

s on the target image to provide examples of their desired

foreground and background regions. The energy function

is parameterized with multiple weights (e.g., color, texture



input image BFM [5] LSQM [16] LCGC [19] proposed method

Parameter weights: � color � texture � smoothing
Figure 7. Comparison with other parameter learning methods.

input image for

proposed method

input image and result

for Grabcut [17]

result for proposed

method

Parameter weights: � color � texture � smoothing
Figure 9. Comparison with Grabcut.

and smoothing) and the segmentation mask is then solved

by maximizing the energy margin iteratively. Thanks to

the capability of learning image-specific parameters, our

method demonstrates superior performance in segmentation

quality compared with other state-of-the-art methods. Note

that we have only used two global features (histograms of

colors and textures) and one smoothing term in our exper-

iments for demonstration purpose. Theoretically, energy

terms of any feature (local or global) and any number of

energy terms can be plugged into our framework easily to

further improve the discriminative power of the segmenta-

tion method.
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