
Less is More: Towards Compact CNNs
Hao Zhou1, Jose M. Alvarez2 and Fatih Porikli2,3

1 University of Maryland, College Park, USA
2 Data61/CSIRO, Canberra, Australia

3 Australian National University, Canberra, Australia

INTRODUCTION
CNNs contain huge number of parame-

ters, which leads to large memory footprint:
(1) Fewer test samples at once.
(2) Not suitable for Mobile devices.

Previous work:

1. Network distillation.
2. Memory efficient structures.
3. Parameter pruning.

We remove the number of neurons dur-
ing training using sparse constraints. remov-
ing neurons has advantages in:

1. Do not rely on sparse data structure.
2. Also apply to Fourier domain.
3. Dimension reduction.

CONTRIBUTIONS
1. Reducing number of neurons of CNNs

during training.
2. Analyzing the importance of ReLU for

sparse constraints.
3. Reducing significant amount of param-

eters for four well-known CNNs.
4. Easy to implement.
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FORMULATION
Objective function:

min
Ŵ

ψ(Ŵ) + g(Ŵ). (1)

Ŵ : the parameter of the CNN.
g(Ŵ): the sparse constraints.
ψ(Ŵ): the objective function of training

a CNN.

Normal Backprop is difficult as:
(1) gradient of g(Ŵ) is difficulty to

compute.
(2) g(Ŵ) is non differentiable at sparse

point.

Forward-backward splitting:
Algorithm 1 Forward-backward splitting

1: while Not reaching maximum number of iterations do
2: One step back-propagation for ψ(Ŵ) to get Ŵk∗

3: Ŵk+1 = argminŴ g(Ŵ) + 1
2τk ||Ŵ − Ŵk∗||2

4: end while

1

one step = one epoch.

IMPORTANCE OF RELU
Considering ReLU as:

ReLU(x) =

{
x if x > ε

0 if x ≤ ε.
(2)

then for a particular neuron Ŵlj , 0 is its local
minimum if all other neurons are fixed.

ReLU Conv X
Z

Ŵlj

SPARSE CONSTRAINTS
Tensor Low Rank [2]:

g(Ŵ) = λ
∑

(j,l)∈Ω

1

n

n∑
i=1

||ŵlj(i)||tr. (3)

Group Sparsity:

g(Ŵ) = λ
∑

(j,l)∈Ω

||ŵlj ||, (4)

EXPERIMENTS ABOUT RELU
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Left: Percentage of nonzero neurons of conv2 for LeNet with and without ReLU layer.
Right: the corresponding top 1 validation error on MNIST.

EXPERIMENTS
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Table 3. Results of adding group sparse constraints on two layers. The best compres-
sion results within 1% decrease in top 1 error rate is shown in bold.

τ Neurons pruned(%) Top-1 error (%) parameter memory
conv2 fc3 conv2 fc3 absolute relative reduction (%) reduced (MB)

LeNet 60 100 45.5 97.75 0.73 0.00 95.35 1.57
80 100 56.5 97.75 0.77 0.04 96.31 1.58
100 100 63.0 97.75 0.76 0.03 96.79 1.59

τ Neurons pruned (%) Top 1 error (%) parameters memory
conv3 fc4 conv3 fc4 absolute relative reduction(%) reduced (KB)

cifar10- 220 280 31.25 70.31 22.21 -0.12 47.17 268.24
quick 240 280 46.88 71.86 22.73 0.4 55.15 313.62

280 280 54.69 70.31 23.78 1.45 58.56 333.01

τ Neurons pruned (%) Top 1 error (%) parameters memory
fc6 fc7 fc6 fc7 absolute relative reduction (%) reduced(MB)

AlexNet 40 35 48.46 56.49 44.58 -0.98 55.15 128.26
45 30 77.05 60.21 46.14 0.57 76.76 178.52
45 35 73.39 65.80 45.88 0.31 74.88 174.14

Table 4. Some compression results of proposed method on fc1 for vgg-B. Neuron:
compression of neurons in the fc1. Parameter: compression of total parameters.

layer τ compression % memory top 1 error (%)
neurons parameters reduced (MB) absolute relative

fc1 5 39.04 35.08 178.02 38.30 0.80

fc1 10 49.27 44.28 224.67 38.54 1.04

fc1 20 76.21 61.30 311.06 39.26 1.76

this state-of-the-art network structure, our method can reduce nearly half of the
parameters and significantly reduce the memory footprint at the expenses of a
slight drop in performance.

7 Conclusion

We proposed an algorithm to significantly reduce of the number of neurons in
a convolutional neural network by adding sparse constraints during the training
step. The forward-backward splitting method is applied to solve the sparse con-
strained problem. We also analyze the benefits of using rectified linear units as
non-linear activation function to remove a larger number of neurons.

Experiments using four popular CNNs including AlexNet and VGG-B demon-
strate the capacity of the proposed method to reduce the number of neurons,
therefore, the number of parameters and memory footprint, with a negligible
loss in performance.

Acknowledgment The authors thank NVIDIA for generous hardware donations.

Results of LeNet on MNIST, cifar-10 quick on cifar-10 and AlexNet on ImageNet. Sparse
constraints are added to two layers.
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this state-of-the-art network structure, our method can reduce nearly half of the
parameters and significantly reduce the memory footprint at the expenses of a
slight drop in performance.

7 Conclusion

We proposed an algorithm to significantly reduce of the number of neurons in
a convolutional neural network by adding sparse constraints during the training
step. The forward-backward splitting method is applied to solve the sparse con-
strained problem. We also analyze the benefits of using rectified linear units as
non-linear activation function to remove a larger number of neurons.
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Results of VGG-13 on ImageNet. Sparse constraints are added to one layer.
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Proposed result on fc6
Proposed result on fc7
Data−free result on fc6
Data−free result on fc7
no sparse constraints

Left: compare with [1] on LeNet.
Right: compare with [1] on AlexNet.
[1] recursively combines similar neurons of a trained network.


