Less is More: Towards Compact CNNs

Hao Zhou¹, Jose M. Alvarez² and Fatih Porikli^{2,3}

- University of Maryland, College Park, USA
 - ² Data61/CSIRO, Canberra, Australia
- ³ Australian National University, Canberra, Australia

INTRODUCTION

CNNs contain huge number of parameters, which leads to large memory footprint:

- (1) Fewer test samples at once.
- (2) Not suitable for Mobile devices.

Previous work:

- 1. Network distillation.
- 2. Memory efficient structures.
- 3. Parameter pruning.

We remove the number of neurons during training using sparse constraints. removing neurons has advantages in:

- 1. Do not rely on sparse data structure.
- 2. Also apply to Fourier domain.
- 3. Dimension reduction.

CONTRIBUTIONS

- 1. Reducing number of neurons of CNNs during training.
- 2. Analyzing the importance of ReLU for sparse constraints.
- 3. Reducing significant amount of parameters for four well-known CNNs.
- 4. Easy to implement.

FORMULATION

Objective function:

$$\min_{\hat{\mathbf{W}}} \psi(\hat{\mathbf{W}}) + g(\hat{\mathbf{W}}). \tag{1}$$

 \hat{W} : the parameter of the CNN.

 $g(\mathbf{W})$: the sparse constraints.

 $\psi(\hat{\mathbf{W}})$: the objective function of training a CNN.

Normal Backprop is difficult as:

- (1) gradient of $g(\hat{\mathbf{W}})$ is difficulty to compute.
- (2) $g(\hat{\mathbf{W}})$ is non differentiable at sparse point.

Forward-backward splitting:

Algorithm 1 Forward-backward splitting

- 1: while Not reaching maximum number of iterations do
- One step back-propagation for $\psi(\hat{\mathbf{W}})$ to get $\hat{\mathbf{W}}^{k*}$
- $\hat{\mathbf{W}}^{k+1} = \arg\min_{\hat{\mathbf{W}}} g(\hat{\mathbf{W}}) + \frac{1}{2\tau^k} ||\hat{\mathbf{W}} \hat{\mathbf{W}}^{k*}||^2$ 4: end while

one step = one epoch.

REFERENCES

- [1] S. Srinivas, R.V. Babu. Data-free Parameter Pruning for Deep Neural Networks In BMVC '15
- [2] J. Liu, P. Musialski, P. Wonka and J. Ye Tensor Completion for Estimating Missing Values in Visual Data. PAMI '13

SPARSE CONSTRAINTS

Tensor Low Rank [2]:

$$g(\hat{\mathbf{W}}) = \lambda \sum_{(j,l)\in\Omega} \frac{1}{n} \sum_{i=1}^{n} ||\hat{\mathbf{w}}_{lj(i)}||_{tr}.$$
 (3)

Group Sparsity:

$$g(\hat{\mathbf{W}}) = \lambda \sum_{(j,l)\in\Omega} ||\hat{\mathbf{w}}_{lj}||, \qquad (4)$$

IMPORTANCE OF RELU

Considering ReLU as:

$$ReLU(x) = \begin{cases} x & \text{if } x > \epsilon \\ 0 & \text{if } x \le \epsilon. \end{cases}$$
 (2)

then for a particular neuron \hat{W}_{lj} , 0 is its local minimum if all other neurons are fixed.

EXPERIMENTS ABOUT RELU

Left: Percentage of nonzero neurons of conv2 for LeNet with and without ReLU layer. Right: the corresponding top 1 validation error on MNIST.

EXPERIMENTS

	au		Neuro	ons pruned(%)	$\operatorname{pruned}(\%) \mid \operatorname{Top-1 \ error} \ (\%)$		parameter	memory
	conv2	fc3	conv2	fc3	absolute	relative	reduction (%)	reduced (MB)
LeNet	60	100	45.5	97.75	0.73	0.00	95.35	1.57
	80	100	56.5	97.75	0.77	0.04	96.31	1.58
	100	100	63.0	97.75	0.76	0.03	96.79	1.59
	au		Neurons pruned (%)		Top 1 error (%)		parameters	memory
	conv3	$\int fc4$	conv3	fc4	absolute	relative	reduction(%)	reduced (KB)
cifar10-	220	280	31.25	70.31	22.21	-0.12	47.17	268.24
quick	240	280	46.88	71.86	22.73	0.4	$\boldsymbol{55.15}$	$\boldsymbol{313.62}$
	280	280	54.69	70.31	23.78	1.45	58.56	333.01
	au		Neurons pruned (%)		Top 1 error (%)		parameters	memory
	fc6	fc7	fc6	fc7	absolute	relative	reduction (%)	reduced(MB)
AlexNet	40	35	48.46	56.49	44.58	-0.98	55.15	128.26
	45	30	77.05	60.21	46.14	0.57	76.76	178.52
	45	35	73.39	65.80	45.88	0.31	74.88	174.14

Results of LeNet on MNIST, cifar-10 quick on cifar-10 and AlexNet on ImageNet. Sparse constraints are added to two layers.

	layer	au	compi	ression $\%$	memory	top 1 error $(\%)$	
			neurons	parameters	reduced (MB)	absolute	relative
-	fc1	5	39.04	35.08	178.02	38.30	0.80
-	fc1	10	49.27	44.28	224.67	38.54	1.04
•	fc1	20	76.21	61.30	311.06	39.26	1.76

Results of VGG-13 on ImageNet. Sparse constraints are added to one layer.

COMPARE WITH [1]

Left: compare with [1] on LeNet.

Right: compare with [1] on AlexNet. [1] recursively combines similar neurons of a trained network.