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Abstract We introduce a new, integrated approach to uncal-
ibrated photometric stereo. We perform 3D reconstruction
of Lambertian objects using multiple images produced by
unknown, directional light sources. We show how to formu-
late a single optimization that includes rank and integrability
constraints, allowing also for missing data. We then solve
this optimization using the Alternate Direction Method of
Multipliers (ADMM). We conduct extensive experimental
evaluation on real and synthetic data sets. Our integrated ap-
proach is particularly valuable when performing photomet-
ric stereo using as few as 4-6 images, since the integrabil-
ity constraint is capable of improving estimation of the lin-
ear subspace of possible solutions. We show good improve-
ments over prior work in these cases.

Keywords Photometric Stereo - 3D reconstruction - Low
rank optimization

1 Introduction

Uncalibrated photometric stereo (UPS) is the problem of re-
covering the 3D shape of an object and associated lighting
conditions, given images taken with varying, unknown illu-
mination. In this work we replace the existing pipeline for
solving UPS with an integrated approach. This paper, like
much prior work [14, 4, 33, 31, 2, 11, 22], focuses on Lam-
bertian objects illuminated by a single distant point light
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source in each image. Existing methods, pioneered by [14],
formulate UPS as the problem of finding a low-rank factor-
ization of the measurements. Specifically, given m images
each with p pixels, let M denote the m X p matrix contain-
ing the pixel intensities. These methods optimize

min|M — M||%  s.t. rank(M)=3. (1)
M

This problem can be solved by SVD, from which we pro-
duce a family of solutions, each consisting of a set of light
sources, albedos, and surface normals. These solutions are
related by a 3 x 3 ambiguity matrix. The surface normals
provided by SVD are in general inconsistent with the partial
derivatives of the surface (i.e. they are not integrable). Con-
sequently, existing methods apply an additional sequence of
steps aimed at reducing the ambiguity and fitting a surface
to the recovered normals.
In this paper we propose instead to optimize:

min||M — M || )
M

s.t. M is rank 3 and produced by an integrable surface.

Eq. (1) optimizes over rank 3 matrices, which can represent
sets of images produced by any set of surface normals. In
contrast, in (2) we optimize over only those rank 3 matrices
that correspond to integrable surfaces.

Intuitively, a single optimization over all constraints may
produce a better global optimum than a sequence of opti-
mizations in which constraints are used one at a time to in-
creasingly narrow the solution (see illustration in Figure 1).
Specifically in UPS the measurement matrix may contain
many errors due to shadows and specular effects. There-
fore, while in theory UPS can be solved with as few as
three images, SVD can properly handle these modeling er-
rors only when many images are supplied. Indeed, current
methods [2, 11] typically use 10 or more images. With fewer
images SVD results tend to provide noisy solutions. Our
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Measurements

Integrable

Fig. 1: An illustration of our approach. Blue represents the set of rank
3 matrices, while red represents the subset of those that correspond to
integrable surfaces. Our optimization seeks to find the integrable ma-
trix (red dot) that is closest to the measurements (black dot). If instead
we first find the nearest rank 3 matrix and then select an integrable
matrix (the blue dots) we may produce a suboptimal solution.

method incorporates integrability into this estimation, pro-
viding valuable additional constraints that help us to find a
better subspace in the presence of fewer images with noisy
estimates. In presence of large number of images SVD based
methods can handle noises and outliers to solve an over-
constrained problem. However for fewer images, a joint op-
timization based on rank constraint can obtain a better sub-
space. Our experiments indicate that our method can pro-
duce reasonable reconstructions with as few as 4 images and
good reconstruction with 6 images, significantly improving
over state-of-the-art methods with these few images.

For our approach we optimize a cost function based on
(2) over the surface, lighting, normals, and (restored) error-
free observations. The cost ensures that normals and light-
ing are consistent with the measurements, which must have
low rank. We use constraints that ensure integrability. This is
somewhat tricky because rank constraints apply to the mea-
surements while integrability constraints apply to the nor-
mals. We show that by constructing a rank 3 matrix that
contains normals, measurements, and lighting, we can im-
pose the rank and integrability constraints together. Specifi-
cally, we use a truncated nuclear norm approach [15] to en-
force the rank constraint, while integrability is represented
by linear equalities. This leads to a single non-convex prob-
lem that we solve using a series of Alternating Direction
Method of Multipliers (ADMM) operations [5, 13].

Our formulation allows us to easily account for miss-
ing data in the measurement matrix. This commonly oc-
curs when pixels are dark due to shadows, or saturated due
to specularities. In some of the prior approaches, this can
be solved with a preprocessing step, which may lead to a
pipeline with yet another optimization [31]. We handle miss-
ing data using matrix completion based on the rank con-
straint. We initialize our optimization using prior approaches,
since non-convex optimization requires a good initialization.

2 Background and Previous Work

In this section we introduce in detail the problem of uncali-
brated photometric stereo for Lambertian objects and review
past work. We assume that we view an object in multiple im-
ages from a fixed viewpoint. In each image the object is illu-
minated by a single, distant point light source. We represent
lighting in image 7 with [; € R®, in which the direction of I;
represents the direction to the lighting, and ||/;|| represents
its magnitude. We represent the object using a set of surface
normals 71; € R3, and albedos p; € R for each pixel. We
then obtain images with the equation:

Mij = III&X(O7 pjllTﬁ]) (3)

where M;; represents the j-th pixel of the i-th image. We
define the surface normal 7; = 7. = (=24, =2y, 1)7,
where 2, and z, represent partial derivatives of the surface
z(x,y) at pixel j. Negative values of p;II'7; are set to 0;
these appear as attached shadows.

We now describe the creation of all images using matrix
operations. We define S to be a 3 x p matrix in which column
J contains p;7;. Given m images, we can stack the light into
the matrix L of dimension m X 3, where each row denotes
one light per image. We concatenate all the images to form
an observation matrix M of dimension m X p, where p is the
number of pixels. Now, in the absence of shadows, we can
write the equation of UPS as:

M = LS. “4)

Classical work on photometric stereo (e.g. [30], see a
recent review in [1]) has assumed that known lighting is
obtained by careful calibration. With L known, (4) can be
solved as a linear least squares problem. A more general
and challenging case is unconstrained photometric stereo,
in which the L is unknown. A common approach, which we
use as a baseline algorithm, follows the steps in Algorithm 1.

Algorithm 1 Baseline

Input : M

Output : Z

Factorization : Perform SVD on M to obtain light and scaled sur-
face normals M = LS [14].

Integrability : Follow Yuille and Snow [33] to resolve ambigu-
ity after the factorization using integrability. In M = LS =
LAY AS, we solve for A, such that S = AS approximately forms
a set of integrable surface normals.

Depth Reconstruction : Obtain the depth map Z from the set of
integrable surface normals S as, e.g, in [3].

Belheumer et al. [4] showed that in UPS the integrable
set of surface normals can only be recovered up to a General-
ized Bas-Relief transformation (GBR). A number of recent
papers have concentrated on methods of solving the GBR
ambiguity. Researchers have used priors on the albedo dis-
tribution [2], reflectance extrema [11], total variation norm
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[24], grouping based on image appearance and color [25],
inter-reflections [9], isotropy and symmetries [29], and spec-
ularity [10] as constraints while solving for the GBR. All of
these methods have first used the above mentioned baseline
described in Algorithm 1 to obtain a solution up to the GBR.

Recent works have explored a variety of other research
directions in photometric stereo. Mecca et al. [17] proposed
an integrated, PDE based approach to calibrated photomet-
ric stereo that uses a mere two images under perspective
projection. It is not clear how to extend this to uncalibrated
photometric stereo. Basri et al. [3] extended the baseline to
handle multiple light sources in each image using a spheri-
cal harmonics formulation. Chandraker et al. [8] proposed a
method to handle attached and cast shadows in the case of
multiple light sources per image. In [27] the authors deter-
mine the visibility subspace for a set of images to remove
the cast and attached shadows for performing UPS. Vari-
ous works have addressed non-Lambertian materials (e.g.,
Georghiades et al. [12] and Okabe et al. [20]).

In the context of Lambertian UPS, Georghiades et al. [12]
proposed to remove shadows and specularities and recover
the missing pixel values using matrix completion algorithms,
e.g., using the damped Wiberg [21] or Cabral’s algorithm [6].
Wau et al. [31] proposed a Robust PCA formulation for cali-
brated Photometric Stereo. Their approach seeks a low-rank
(not necessarily rank 3) approximation to M while remov-
ing outlier pixels (corresponding to shadows and speculari-
ties). Oh et al. [18, 19] applied Robust PCA in the context of
calibrated photometric stereo, replacing the Nuclear Norm
with a Truncated Nuclear Norm (TNN) regularizer [15]. In
[11], Favaro et al. have used Robust PCA as preprocessing
to the baseline algorithm for UPS.

3 Our Approach

In this section we introduce our integrated formulation that
enforces integrability of surface normals in solving the un-
calibrated photometric stereo problem. We recall from (4)
that the measurement matrix M can be factored into M =
LS. To access the derivatives of z(z,y) we write S as a
product

S =NA, (5)

where N is a 3 X p matrix whose j’th column is n; =
(=2, =2y, )T and A = diag(\;, A2, ..., Ap) with \; =
—p;/|ln;|l. We next define the matrix:

XT xN I N
X = |:XL XM:| = |:L MA1:| ’ (6)

where X is (3 +m) x (3 + p). The matrices X, /A, and the
depth values (z(x,y)) form the unknowns in our optimiza-
tion. Note that, because LN = M A~!, the following holds

for any 3 x 3 non-degenerate matrix A

A—l
X = [LA_l] (A AN]. )
This shows that X is rank 3. The matrix A represents a lin-
ear ambiguity. However, forcing the normals in NV to be in-
tegrable will reduce this ambiguity to the GBR.

To force integrability we denote by z = (21, ..., 2,)” the
vector of unknown depth values and require
XN = [D,2, Dyz, —1]", (8)

where D, D, denote respectively the z- and y-derivative
operators and 1 denotes the vector of all 1’s.

Additional constraints are obtained by noticing that, be-
cause 0 < p; < land ||n;|| > 1,

-1<);<0 ©)
and
X1 = I35 (10)

We are now ready to define our optimization function.
Let W be a binary, m x p matrix so that W;; = 0 if M;; is
missing and W;; = 1 otherwise, and let

1
Jaata(X, ) = SlIW © (M = XM A2, (an

where © denotes element-wise multiplication. Then (2) can
be written as
X, A,z

fdata (Xa A)

s.t. rank(X) =3, (8), (9), and (10).

min
12)
Handling the rank-3 constraint: Enforcing the non-convex
constraint rank(X') = 3 can be challenging. In the context

of matrix completion a recent paper [15] proposed using the
Truncated Nuclear Norm (TNN) regularization term:

3
Fenn(X) = |IX] = Y ow(X), (13)
k=1

where || X||. denotes the nuclear norm of X and oy (X) is
the k-th largest singular value of X. Clearly, fi,,(X) =0
if and only if rank(X) < 3. We use f;,,, as a regularizer
and solve

XAz fdata(Xa A) +cftnn(X)

st (8), (9),and (10),

min
(14)
where c is a preset scalar.

There are several different ways of handling the rank

constraint. One such technique is to use explicit factoriza-
tion of M into L, N and p with the integrability constraint
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over N. This tri-linear decomposition can be solved with
alternate steps. Alternate optimizations are sometimes slow
to converge. Another technique widely used in matrix com-
pletion is Nuclear Norm (NN) relaxation : > 0% (X). Even
though NN relaxation is convex, TNN [15] regularization is
shown to outperform the former for matrix completion prob-
lems. An alternate approach is to directly impose rank(X) =
3 with ADMM. We have implemented both NN relaxation
and rank(X) = 3 and empirically observed TNN to out-
perform both of them. Thus in this paper we have used TNN
regularization to handle the rank constraint.

4 Optimization using ADMM

In this section we introduce a method for solving (14). This
is a challenging problem because both fj,:, and fi,, are
non-convex. Specifically, fiqtq (11) is bilinear in X and A,
while fi,, (13) is a difference between two convex func-
tions. Our solution is based on a nested iteration in which
the outer loop uses majorization to decrease f;,, whereas
the inner loop uses the scaled ADMM with alternation to
decrease fyqtq.

Outer loop: Following [15] at each iteration of the outer
loop we replace fi,,(X) with a majorizer. Specifically, at
iteration k let X(*) = UXVT be the singular value decom-
position of X (%) and let Us (and V3) be the matrices con-
taining the left (right) singular vectors corresponding to the
three largest singular values of X(*). U3 and V5 are deter-
mined in the outer loop and are held constant throughout the
inner loop. We then define

£ (X) = | X+ — trace(UT XV5). (15)

It was shown in [15] that féﬁzj(X) > finn(X) for all X

and that f,(,ﬁzj(X(k)) = finn(X ™), and so decreasing f,,q;
leads to decreasing fi,y,.

Inner loop: In the inner loop we seek to minimize

faata(X, A) + cfF)(X)

st.  (8), (9),and (10),

min
X, Az
(16)

We use scaled ADMM, a variant of the augmented Lagrangian
method that splits the objective function and aims to solve
the different subproblems separately. We maintain a second
copy of X, which we denote by Y and form the augmented
Lagrangian of (16) as follows

. 1 M 2
max min - Sf|[WO (M- XTA)|E+
-
c(|IY]]« — trace(U3 Y'Va)) + 5\|Y - X4+ TI%

st XT =T34, —1<A; <0V, XN = [Dyz, Dyz, —1]7,
an

where ||V — X + I'||%, denotes the Lagrangian penalty; 7
is a constant, and I is a matrix of Lagrange multipliers the
same size as X that is updated by the ADMM steps [5, 13].
We next describe the ADMM steps (applied iteratively).

Step 1: Solving for (X, A, z).
In each iteration, k, we solve the following sub-problems:

1. Optimize w.r.t. X7 XT (1) = 5 o
2. Optimize w.r.t. X:

XL (+1) = argminHYL(k) - X4+ FL(k)H%
XL

=yL® L pL(k),

3. Optimize w.r.t. X~ and z:

(18)

(XN D) gDy = apgmin|[Y N B) — XN 4 PN (012,
XN,z

st. XN = [Doz, Dyz, —1]" (19)

The problem is solved by setting the third row of XV (k+1)
to —1 and by substituting D,z and D,z for the first
two rows of X*V in the objective, obtaining linear least

squares equations in z that can be solved directly.
4. Optimize w.r.t. X™ and A:

1
(XM (4D AGR+DY —aremin=|W © (M — XM A)||%,
XM A 2

.
+ EIIYM(’” - XM 4 M &2,
st. —1<); <0V

We will separate this into the known and unknown pix-
els based on W. For an unknown pixel j in frame ¢
(W;; = 0) the first term vanishes and the minimization
only determines the respective entry of X so that:

M (k+1) _ M (k) M (k)
X =Y + 1 . (20)

For the known pixels, since A is diagonal we can write
these equations separately for each column j (correspond-
ing to the j-th pixel):

M (k41 k41 1
(XD XD —argmin S [|(W; © (M — A XM)|13
X]M)\j2

TivM (k M (k
+ I = XM 3

st. —1<A; <0. 1)

The problem (21) is non-convex. We will solve it with
alternate optimization. X and A are updated by the
following steps until convergence.
XM:Leth:WjG)Mj,Xj=Wj®X]1<V[and
M (k M (k M (k

AY® —wi o M ® 4 M ™). Then,

5 N % T iM(k %
X = argmin S|IN = X X5 + 51143 - X3
XJ

y TM (k
_ NN A (k) )
AT '
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A:

1 - .
Aj = argmin §||M] — X3 st — 1<) <0,
b

= min(0, max(—1, X] M; /|| X;][3)). (23)
Step 2: Solving for Y. Solving for Y requires a solution to
Y*HD = argmine (||Y . — trace(U7 YV3))
Y

-
+jW—XWﬂ+ﬂW@ (24)

Below we show that this problem can be solved in closed
form by applying the shrinkage operator, obtaining

y(k+1) _ DC/,(X(kﬂ) O EU3V3T), (25)
T

where the shrinkage operator D (.) is defined as follows. For
ascalar s we define D;(s) = sign(s) xmax(|s|—t,0). Fora
diagonal matrix S = diag(sy, o, ...) with non-negative en-
tries we define D;(S) = diag(D:(s1), D¢(s2), ...). Finally,
for a general matrix 1, let 7 = USV” be its singular value
decomposition, then Dy (1) = UD,(S)V7.

To derive (25), we rewrite (24) as:

y e+ = argmin\|Y\|*+21\|Y—X<k+1>+r<k>—5U3VBT\|2F—T,
Y C T

(26)

where T' = trace(V3UJ (X (++1) — P(R))) 4 2£||U3V3TH%
T
is independent of Y. Equation (26) is of the general form
1

n%}n||Y||* +o |Y — C||%, for which the solution is D;(C),
as is shown in [7], implying (25).

Step 3: Update of I'. The matrix I" contains Lagrange mul-
tipliers that are used in the saddle-point formulation (17) to
enforce the equality constraint X = Y. The following up-
date is a gradient ascent step that acts to maximize the aug-
mented Lagrangian (17) for I'. For details, see [5, 13].

F(k+1) — F(k) 4 (Y(k‘+1) _ X(k+1)). (27)

The entire optimization process is listed in Algorithm 2.
We will make the code available.

5 Experimental Results

In this section we evaluate and compare the performance of
our algorithm with two versions of the baseline algorithm,
in both real world and synthetic examples. We compare the
following methods:

Baseline: Algorithm 1 described in Section 2. This method
isusedin [2,11,25,9, 29, 10].

RPCA: Images are preprocessed using Robust PCA [31],
parameters are chosen as suggested by [11]. Then we apply
the baseline algorithm to the obtained matrix. This method

Algorithm 2 TNN formulation solved with ADMM

Input: M, W.
Output: X, z.
Initialization: Initialize X* and XV by running Baseline algo-
rithm (without resolving GBR). Initialize XM = —M, A = —1,

andc=1.8et X =X, Y =X,I'=0,and 7 = 1.
k=0.
while not converged do
Perform SVD over X (%) to obtain Us and V3.
Run ADMM:
while not converged do
Update of X, z and A.
Update X T(F+1) =[5 5.
Update X L(*+1) ysing (18).
Update X V(F+1) and z using (19).
while not converged do
for each pixel j do
Update le_\/[(k+1) using (22) and /\l§k+1) using (23).
end for
for each pixel j in each image 7 do
if W;; = 0i.e. pixel j is not known then
Update X, ) using (20).
end if
end for
end while
Update Y using (25).
Update of " using (27).
k=k+ 1.
end while
end while

is used in [11]. RPCA solves a sparse low rank optimiza-
tion to detect shadows and other non-Lambertian effects.
The method uses L; regularization to identify outlier pix-
els, even when they do not result in intensities near O or 1.
The refined intensities obtained from RPCA may not be in
the range of [0,1]. Obtuse angle between the surface normal
and the light can cause negative intensity and specularity can
cause intensity more than 1.

Our(NC): Our proposed formulation as described in Sec-
tion 4 using W = 1, i.e., no completion. This allows com-
parison to Baseline, which also does not perform matrix
completion.

Our(MC): Our proposed formulation as in Section 4 with
w;; € {0,1}, allowing for matrix completion. In both ver-
sions of our algorithm we use ¢ = 1. We identify missing
pixels as those with normalized intensity outside the range
of (0.02,0.98). We use RPCA algorithm to perform UPS,
and the obtained normals and lights are used to initialize our
algorithm as highlighted in Algorithm 2.

All the tested methods solve for the surface only up to a
GBR ambiguity. To compare the results with ground truth,
we find the GBR that optimizes the fit to ground truth, and
measure the residual error.

In the presence of a large number of images with noise
and non-Lambertian effects, we expect the sequential pipeline
of Baseline and RPCA, involving SVD, to produce accurate
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solutions, because the problem solved by SVD is heavily
overconstrained. In the presence of fewer images, our inte-
grated method will be able to produce a more accurate de-
composition by using both rank and integrability constraints
to find the right linear subspace. Thus we expect our inte-
grated approach to improve over the Baseline and RPCA
as we reduce the number of images. In the following sub-
section we will show results with synthetic and real world
data that supports our claim.

5.1 Experiments on Synthetic Data

We use five real objects (“cat”, “owl”, “rock”, “horse”, “bud-
dha”) to produce synthetic images, their shape is obtained by
applying calibrated photometric stereo to a publicly avail-
able dataset [16]. We use the normals and albedos from these
objects to generate images. Each image is generated by a
randomly selected light source which lies at 30 degrees of
the viewing direction on average. We clip the intensities out-
side the range [0,1] to create shadows and specularity. All
images are of size 512 x 340 with objects occupying 29-
72K pixels. A segmentation mask is also supplied. To show
the variation of performance with the number of images Ny,
we use sets of 4, 6, 8, 10, 15, 20, 25 and 30 images re-
spectively. We add Gaussian noise with standard deviation
ranging from 1% to 7% (in steps of 2%) of the maximum
intensity. For each choice of noise, we run 5 different tri-
als with random noise and lighting to generate the synthetic
images. Thus we have 5 objects, 4 levels of noise and 5 ran-
dom simulations, making a total of 100 experiments for each
of the 8 different sets of 4, 6, 8, 10, 15, 20, 25 and 30 im-
ages. As a measure of performance, we calculate the error
in the reconstructed depth map. Let the ground truth surface
be Z7 and the reconstructed surface be Z,... We measure
error in depth as Z,,.,, = 100 X % To compare two
algorithms (say, algorithm A vs. algorithm B), we define the
following two terms :

Relative Improvement (in %) : Denote ef and e’ as the
depth error for each trial k& by using algorithm A and B re-
spectively. The Relative Improvement of algorithm B over
A is the average of (e‘;ie;aei) over all trials K for each choice
of Ny expressed in perckentage.

Percent of Improved Trials : This denotes the number of
trials in which algorithm B improves over A. In terms of
notation introduced previously, this is - Zszl I(e? < eb),
where I(.) is in indicator variable and K is the total number
of trials for each choice of N;. The measure is expressed in
percentage.

In Figure 2 we compare performance of Our(MC) with
Baseline and RPCA, on synthetic data in the presence of
Gaussian noise. We initialize our methods with RPCA. We
observe that as the number of images decreases, our method
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Fig. 2: Performance comparison of Our(MC) algorithm to RPCA (in
blue) and Baseline (yellow) for different numbers of input images with
gaussian noise under a pure lambertian model. The left bar plot shows
the amount of relative improvement achieved with our algorithm, and
the right plot shows the percent of trials in which our algorithm out
performed each one of the competing algorithms.
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formed each one of the competing algorithms.
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improves compared to Baseline and RPCA. With simple Gaus-

sian noise RPCA doesn’t produce additional advantages as
there are no outliers.

In Figure 3 we compare the performance of our methods
on synthetic data with Gaussian noise and with specularities
generated by the Phong reflectance model [28, 23]. Mathe-
matically each image M; can be represented as :

M; = L;S + ks(VR)*, (28)

where V' is the viewing direction and R denotes the direc-
tions of perfect reflection for incoming light L; for each
pixel j. Larger a produces sharper specularities, while larger
ks causes more light to be reflected as specularity. We use
ks = 0.2 and o = 10. We observe that the advantage of
Our(MC) degrades as the number of images increases, as ex-
pected. This experiment shows that even though our method
is designed specifically for Lambertian objects it can tolerate
a certain amount of model irregularities such as specularity.
With 4 images our method beats RPCA in 85% of the all
trials with a relative improvement of 22.12%.

In Figure 4 we compare Our(MC) with Baseline and
RPCA with variation of noise for different subsets of im-
ages (4,6,10 and 15). We can conclude that our method is
robust to noise and its advantages do not degrade with an
increase in noise.

5.2 Experiments on Real World Data
5.2.1 Lambertian Objects

To test our approach on real data, we used the two pub-
licly available data sets [16] and [32] consisting of 5 and
7 objects respectively. We perform Uncalibrated Photomet-
ric Stereo over a set of images and use the result of Cal-
ibrated Photometric Stereo as Ground Truth for compari-
son. The datasets provide calibrated lighting, which we use
to perform calibrated photometric stereo. We use the code
provided by [32, 16] along with the lighting information

35 100

% OUT(VC) vs RPCA ERONG) ve RPCA
= [ Our(NC) vs RPCA Our(MC B:
> [0ur(MC) vs Base 2 90 ) e gase
c 25 [10ur(NC) vs Base £ ml [10ur(NG) vs Base
= [
£ § 80
£ 8
g E 70
E B
° € 60
2 8
o o
2 o 50

40

4 6 8 10
Number of Images

6 8 10
Number of Images

Fig. 5: Performance comparison of Our (MC) and Our (NC) algo-
rithms to RPCA and Baseline with real images.

to obtain normals and depth map. The obtained depth map,
albedo, and surface normals from calibrated PS are consid-
ered as ground-truth for photometric stereo with unknown
lighting similar to [2]. To show the variation of performance
with the number of images, we select subset of 4, 6, 8 and 10
images for each object. We perform 10 random selections of
subset of images for each of the 12 objects. Thus we have
120 experiments for every subset of images.

In Figure 5 we compare the performance of our methods,
Our(MC) and Our(NC), with Baseline and RPCA with vari-
ation in the number of images. We see that for fewer images
our methods outperform Baseline and RPCA by a significant
amount and are comparable to RPCA for more images. For 4
images Our(MC) outperforms Baseline in 84.9% cases with
a relative improvement of 30.6% and outperforms RPCA in
81.4% cases with a relative improvement of 12%. However
for 10 images we beat Baseline in 75% cases with a relative
improvement of 10.7% and beat RPCA in only 47.3% cases
with a relative improvement of -7.2%.

4 images

20

[1Baseline
EIRPCA
I Our(MC)

o

mean Z error
o >

o

cat buddha owl horse rock cat frog pig lizard hippo turtlescholar

Objects
0. 6 images
[ 1Baseline
15 EERPCA
[ Il Our(MC)

mean Z error
>
T

o
T

cat buddha owl horse rock cat frog pig lizard hippo turtlescholar
Objects

Fig. 6: Average surface reconstruction error with 4 (top) and 6 (bot-
tom) real images of 12 objects over 10 random trials using Our(MC),
RPCA and Baseline.
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4 images

n
o

Il Our(MC)
[ RPCA
[IBaseline

performs RPCA on 11 out of 12 objects for 4 images and 10
out of 12 objects for 6 images (and is comparable in 1). With
10 images the average reconstruction error using Our(MC)
over all objects and all trials is 4.6%. This increases to 8.1%
with four images, and is only 5.4% with six images. This
shows that we have reasonable reconstruction with 4 images
and good reconstruction with as few as 6 images.

ol

o

median angular error (in degree)
o

o

cat buddha owl horse rock cat frog pig lizard hippo turtle scholar

Objects Figure 7 shows the average of median angular error in
20 6 images S— surface normal obtained by Our(MC), RPCA and Baseline
e on 12 real-world objects over 10 random simulations. Our(MC)

o

outperforms both RPCA and baseline on all 12 objects for
4 images and 10 out of 12 objects for 6 images. This shows
that also in terms of surface normal reconstruction error our
algorithm outperforms RPCA and Baseline when fewer im-
ages are available.

(&

median angular error (in degree)
o

o

cat buddha owl horse rock cat o&%%m pig lizard hippo turtle scholar In Figure 9 we compare the error in surface reconstruc-
8 images tion between Baseline, RPCA, and Our(MC) on some of our
20 . .
EOUC) real world examples. Figure 10 shows two views of sur-
15 JBaseline faces reconstructed using Our(MC) algorithm using 4 im-

ages, showing reasonable surface reconstruction. These re-
sults suggest that our joint approach to enforcing rank and
integrability constraints can significantly improve the per-
formance of photometric stereo in the presence of a few im-

&l

median angular error (in degree)
>

0 ages.
cat buddha owl horse rock cat fliog pig lizard hippo turtle scholar g . . . .
Objects In general, we see that incorporating matrix completion
. 10 images into our formulation results in a slight improvement, with
G Our(MC) somewhat outperforming Our(NC). This indicates
[]Baseline

ol
T

that the improvement of our method compared to RPCA or
Baseline is mostly due to the joint optimization formula-
tion and not due to matrix completion. We further note that
RPCA seems to significantly improve over Baseline. RPCA
is able to identify outliers and use that extra information for
better recovery. This also suggests that the robust error func-

cat buddha owl horse rock cat Ogj%gcts pig lizard hippo turtle scholar tion used by RPCA is important. However our integrated
approach, which does not have a robust cost function like

Fig. 7: Average median angular error in surface normal with 4, 6, 8 RPCA, still outperforms RPCA for 4 and 6 images and is al-
and 10 real images of 12 objects over 10 random trials using Our(MC), ~ most equal for 8 or 10 images. This shows that an integrated

&
T

median angular error (in degree)
>
T

o

RPCA and Baseline. approach is very useful for a small number of images and
provides similar gain compared to RPCA for more images.

Ci f ADMM Convergence of Truncated Nuclear Norm (TNN) . . .
e g TR It would be an interesting topic of future work to amend

102k

\ the cost function of Our(MC) to include RPCA’s robust han-
\ dling of error, to see if this further improves its performance.

700
500

Cost function defined in eq (17)
Cost function defined in eq (16

**************** - 5.2.2 Non Lambertian Objects
0 100 200 300 400 500 0 5 10 15 2
Iteration Iteration

Fio. 8: C ¢ ADMM aleorithm f b iteration of TNN We also test our method on 8 objects of a Non Lambertian

18. o Lonvergence o algorithm for each lteration o Objects Dataset [26]. We compare our method with RPCA
as shown in equation 17 (left). Convergence of TNN regularized cost . R R

function as shown in equation 16 (right). and Baseline. For each object we choose 5 different random

sub-samples to 4, 6, 8, 10, 15, 20, 30 and 40 images. In Table

1 - 9 we show the results of Our(MC), RPCA and Baseline

Figure 6 shows the average reconstruction error obtained  for different number of images. The results show that our

by Our(MC), RPCA and Baseline on 12 real-world objects ~ method is also robust in the presence of Non Lambertian

over 10 random simulations. We observe that Our(MC) out- objects.
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Fig. 9: Reconstruction error |Z1 — Ze.| for Baseline, RPCA and Our(MC) on “Cat”, “Owl”, “Pig” and “Hippo” shown in each row. The left

column shows results for 4 images, the right shows results for 10.
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Fig. 10: Two views of surfaces reconstructed with Our(MC) algorithm for 4 images. Each column shows two images of surfaces reconstructed

on “Cat”, “Owl”, “Pig” and “Hippo” respectively.

The result shows that Our(MC) consistently performs
better than Baseline and RPCA. Even for large number of
images, like 96, Our(MC) improves over RPCA by 6.19%
on average over all objects in the dataset.

For an image of size 512 x 340 with an object occupy-
ing an area of 30K pixels, our algorithm takes 20 minutes
on a 2.7 GHz Intel Core i5 machine. In figure 8 we show a
typical sample convergence graph for our ADMM algorithm
which solves the optimization problem (17) on the left and
the convergence graph for TNN-ADMM algorithm which
solves our original optimization (16) on the right. We empir-
ically observe that ADMM converges to a local minimum.

Since the problem is non-convex there is no guarantee of
convergence to the global minimum.

6 Conclusion and Future Work

In this paper we have introduced a new low-rank constrained
optimization method for solving uncalibrated photometric
stereo using fewer images. The key to this approach is to
combine rank and integrability constraints in a single opti-
mization problem. This relies on a novel formulation that
exposes both depth and surface normals to the optimiza-
tion, linking them with an integrability constraint. We then
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Table 1: Median Surface normal Reconstruction error for 4 images

Algorithms cat buddha | bear | goblet | potl | reading cow | harvest
Baseline 9.46 15.02 11.20 | 52.88 | 10.30 | 43.24 18.38 | 49.39
RPCA 10.48 11.63 8.37 | 39.49 8.32 41.86 12.62 | 4241
Our(MC) 9.74 9.91 8.50 | 38.95 8.39 41.00 13.95 | 42.40

Table 2: Median Surface normal Reconstruction error for 6 images

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 7.34 13.02 | 7.73 | 43.35 | 9.11 36.83 15.22 | 46.74
RPCA 7.02 10.68 | 7.23 | 3998 | 7.77 34.78 12.18 | 39.68
Our(MC) 6.75 9.03 741 | 39.61 | 7.34 | 33.96 1191 | 38.96

Table 3: Median Surface normal Reconstruction error for 8 images

Algorithms cat | buddha | bear | goblet | potl | reading cow | harvest
Baseline 7.01 12.73 | 7.86 | 38.39 | 8.83 36.20 1476 | 45.61
RPCA 6.68 10.78 | 7.49 | 36.36 | 7.71 31.11 12.11 39.84
Our(MC) 6.30 9.13 7.63 | 33.60 | 7.27 | 30.40 11.06 | 39.37

Table 4: Median Surface normal Reconstruction error for 10 images

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 6.99 12.56 8.18 | 36.46 | 8.41 35.07 14.72 | 4525
RPCA 6.64 10.88 7.76 | 35.19 | 7.66 32.55 12.69 | 39.75
Our(MC) 6.18 9.19 8.15 | 3148 | 7.73 32.02 11.38 | 3945

Table 5: Median Surface normal Reconstruction error for 15 images

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 6.99 1195 | 7.85 | 45.11 | 7.86 | 31.29 1527 | 43.52
RPCA 6.61 11.03 | 7.80 | 34.89 | 7.49 31.58 13.40 | 40.50
Our(MC) 5.89 9.36 8.26 | 30.98 | 6.71 31.08 11.87 | 40.55

Table 6: Median Surface normal Reconstruction error for 20 images

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 6.81 11.77 7.68 | 46.55 | 7.78 30.70 14.87 | 43.02
RPCA 6.56 11.08 7.76 | 3330 | 7.43 30.17 13.54 | 40.20
Our(MC) 5.78 9.52 834 | 3140 | 6.91 29.49 11.74 | 40.70

Table 7: Median Surface normal Reconstruction error for 30 images

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 6.73 11.76 | 7.92 | 46.01 | 7.89 | 30.48 1442 | 4042
RPCA 6.63 11.32 | 8.05 | 32.71 | 7.59 | 33.65 13.46 | 38.95
Our(MC) 5.68 9.72 8.55 | 31.96 | 6.89 | 3259 | 11.69 | 38.22

Table 8: Median Surface normal Reconstruction error for 40 images

Algorithms cat | buddha | bear | goblet | potl | reading cow | harvest
Baseline 6.70 | 11.80 | 7.74 | 44.46 | 7.90 | 30.89 14.14 | 39.75
RPCA 6.69 1144 | 792 | 34.05 | 7.64 | 29.05 13.39 | 38.84
Our(MC) 5.58 9.83 837 | 31.71 | 6.56 | 27.62 | 12.01 | 38.28
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Table 9: Median Surface normal Reconstruction error for all (96) images.
(We set RPCA parameter to 0.5)

Algorithms cat | buddha | bear | goblet | potl | reading cow harvest
Baseline 6.60 11.58 | 7.34 | 4398 | 7.94 31.18 13.99 | 39.55
RPCA 6.32 10.80 719 | 3227 | 692 27.08 11.93 38.27
Our(MC) 5.34 9.14 7.55 | 32.68 | 5.18 27.06 12.01 38.60
show how to perform this optimization using a truncated nu- 9. Chandraker MK, Kahl CF, Kriegman DJ (2005) Re-

clear norm and ADMM. Our joint formulation produces bet-
ter solutions, compared to other methods that use SVD, for
fewer images. We have shown promising results compared
to baseline approaches using both real and synthetic exam-
ples. We also observe that our method can handle certain de-
grees of model irregularities as it has outperformed RPCA
in synthetic examples with specularities generated using the
Phong model.

In the future, it will be interesting to apply the idea of
Robust PCA to our formulation. We would also like to ex-
tend this work to handle more general lighting configura-
tions, e.g., using spherical harmonic approximations to light-
ing.
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